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ABSTRACT
Parametric models are widely used in motion analysis. Tra-
ditionally, affine or learned models are adopted. Here, we
propose the use of a set of linear models that dynamically
adjust their properties to approximate first-order structures
in noisy optic flow fields. Each model is generated by
the evolution of a recursive network that can be used as
a process equation of a multiple model Kalman Filter. The
presence of a model is checked by computing the consis-
tence between the observations (data) and the predictions
(model). In each image region, for each model, a prob-
ability value can be computed, on which to base motion
analysis. Experimental results on multiple motion detec-
tion problems and facial expressions analysis validate the
approach. The algebraic transformations relating our linear
descriptors with the traditional affine models are discussed.
KEY WORDS
Recursive Filtering, Motion Detection, Kalman Filter, Op-
tic Flow.

1 Introduction

Reliable complex (e.g. multiple or non rigid) motion anal-
ysis is a challenging problem in computer vision, with sev-
eral impacts in different application domains. Indeed, dis-
tinguishing on visual basis, different motion causes may
help the recognition of actions and events [1] [2] [3], such
as gestures [4] [5] and facial expressions [6], the location of
objects whose trajectory could intersect observer’s path, or
to coordinate movements to interact with other moving ob-
jects (separating ego-motion from independent object mo-
tion), as well the reconstruction of the 3-D structure of the
observed scene.

The multiple motion detection problem can be ad-
dressed as a segmentation problem relying on local descrip-
tors of the optic flow. A popular class of local flow descrip-
tors is based on parameterized models of optic flow [7].
Such models, learned from examples [8] [9], or specified
a priori as constant and affine (linear) models, are charac-
terized by a small number of parameters, which provide a
concise description of the optic flow structure that can be
used to recognize motion patterns from image sequences.
In general, linear models can be used both for estimating

optic flow directly from the spatio-temporal image deriva-
tives and for filtering a dense optic flow field. In the recent
years, the former approach greatly affermated [10] since
the recovering of the model coefficients directly from the
spatiotemporal variations of image intensity improves the
accuracy and stability of the motion estimates. These meth-
ods work very well when the model is a good approxima-
tion to the image motion, but they fall short when large
image regions are not well modeled by a single parametric
motion. This could happen because of the complexity of
motion or because of the presence of multiple motions.

In this paper, we propose a method to design ad-
justable linear models for the analysis of complex dense
optic flow fields. The models are specified as discrete
space-time dynamical systems, in the velocity space, that
are characterized by an unforced or “free” response, given
by the structure of network interconnections, and a forced
response related to the contingent local optic flow infor-
mation in input. In this way, given a motion information
represented by an optic flow field extracted by a “classi-
cal” algorithm, we recognize if a group of velocity vectors
relates to a specific motion pattern, on the basis of their spa-
tial relationships in a local neighborhood. More precisely,
the analysis/detection occurs through a spatial recurrent fil-
ter that checks the consistency between the spatial struc-
tural properties of the input flow field pattern and a set of
linear models representing (first-order) elementary compo-
nents of the optic flow [11]. In order to design a filter that
checks this consistency, in an adaptive way, the linear mod-
els can be considered the process equations of a multiple
model Kalman Filter (KF). Motion segments emerge from
the noisy flows as the output of the KF that compares its
prediction to the actual observations of the local properties
of the optic flow.

Many works in the literature make use of the Kalman
Filter for motion estimation. It has been used to estimate
kinematic parameters (rotational and translational veloci-
ties and acceleration) of three-dimensional features [12] or
to track 2D features through a sequence [13]. In [14] affine
motion models are used to perform a region-based tracking
in long image sequences and a standard Kalman Filter gen-
erates recursive estimation of each motion parameter. The
novelty of the approach presented in this paper is in the def-



inition of models, which describe the optic flow and not the
motion in the 3D space.

2 Linear models

Motion flow fields usually consist of large patches of flow-
patterns, which result from a common cause (e.g., from
ego-motion or object motion). These flow-patterns can be
characterized on the basis of their first-order (linear) differ-
ential properties. From this perspective, local spatial fea-
tures around a given location of a flow field can be of two
types [11]: (1) the average flow velocity at that location,
and (2) the structure of local variation in the neighborhood.
The former relates to the smoothness constraint or struc-
tural uniformity, the latter refers to the linearity constraint
or structural gradients. Velocity gradients provide impor-
tant information about the 3-D layout of the visual scene.

Formally, the velocity gradient tensor can be written
as follows:

T =

[

T11 T12

T21 T22

]

=

[

∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y

]

. (1)

If we consider a point x = (x, y) in the spatial image
domain, the linear properties of a motion field v(x, y) =
(vx, vy) around the point x0 = (x0, y0) can be character-
ized by a first-order Taylor expansion:

v = v̄ + T̄x = v̄ +

[

T̄11 T̄12

T̄21 T̄22

]

x (2)

where v̄ = v(x0, y0) = (v̄x, v̄y) and T̄ = T|x0
. By

breaking down the tensor in its dyadic components, the mo-
tion field can be locally described through two-dimensional
maps representing elementary flow components (EFCs)
and Eq. (2) can be written as:

v = α
xv̄x+α

yv̄y +d
x
xT̄11+d

x
y T̄12+d

y
xT̄21+d

y
yT̄22 (3)

where α
i are pure translations:

α
x :

[

x
y

]

7→

[

1
0

]

, α
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x
y

]

7→

[

0
1

]

and d
i
j are cardinal deformations:

d
x
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y
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x
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[
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y
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y
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]

d
y
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y

]

7→
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0
x

]

, d
y
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[

x
y

]

7→

[

0
y

]

.

The components of pure translations α
i can be incorpo-

rated in the corresponding deformations components, thus
obtaining generalized deformation components:

v
x
x = a1α

x + a2d
x
x , m1

v
x
y = a3α

x + a4d
x
y , m2

v
y
x = a5α

y + a6d
y
x , m3

v
y
y = a7α

y + a8d
y
y , m4

(4)

In this way, we have four classes of deformation gradients:
one stretching (vi

i) and one shearing (vi
j) for each cardinal

direction. As it will be clear in the following, this choice
gives to the model maximum flexibility: every gradient de-
formation within a single class will be built through the
same recurrent network, just by changing its driving inputs
on the basis of direct local measures on the input optic flow.
Figure 1 shows the four classes of deformation gradients.
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Figure 1. The generalized deformation components (vx
x,

v
x
y , v

y
x, v

y
y) are obtained by incorporating the pure transla-

tions in the corresponding cardinal deformations.

It is worthy to note that Eqs. (3) and (4) describe, in fact,
an affine model:

[

vx

vy

]

=

[

c1

c4

]

+

[

c2 c3

c5 c6

]

·

[

x
y

]

(5)

where ci are constants and vx and vy are the horizontal
and the vertical components of the flow. The parameter
vector [c1, c2, . . . , c6] describes a specific configuration of
optic flow that locally provides a good approximation of
3D rigid moving objects. The six parameter affine model
is reasonable to describe the motions of smooth surface in
small image regions. The affine model is not sufficient
to describe non rigid motion, like the motion of a human
face [6]. However the motion within small patches can be
still approximated by a first-order model. The relationships
between these patches will describe the global motion of
the face. The parameters ci have qualitative interpretations
in terms of image motion, for example c1 and c4 repre-
sent horizontal and vertical translation and we can express
divergence (isotropic expansion), curl (rotation about the
viewing direction), and the two components of shear defor-



mation (squashing, def1, or stretching, def2) as combina-
tion of the ci’s:

div = c2 + c6

curl = c3 − c5

def1 = c3 + c5

def2 = c2 − c6

(6)

3 Kalman filtering

The problem of evidencing the presence of a certain com-
plex pattern in the optic flow is posed as an adaptive fil-
tering problem. The Kalman Filter is an optimal recursive
adaptive filter [15], in the sense that it can iteratively pro-
cess new measures as they arrive, on the basis of the knowl-
edge about the system obtained by previous measurements.
Kalman filtering is an optimal estimator if noise is inde-
pendent, zero-mean and normally distributed. The output
of the filter will be the a posteriori estimate of motion field
improved by the additional (contextual) information pro-
vided by Kalman innovation.

Kalman filtering needs a measurement equation and
a process equation. Formally we can write the following
measurement equation:

v[k] = C[k]v[k] + n1[k] (7)

where v[k] is the optic flow at current time k, an intensity-
based measure of the actual velocity field v[k] and n1[k]
models the uncertainty of the algorithm. The linear opera-
tor C represents a general “early-vision filter” providing a
noisy measure of an observable property of the visual stim-
ulus.

The process equation models the temporal evolution,
from the previous step k − 1 to the current time k, of the
relationships among visual features over a fixed spatial re-
gion, according to specific rules embedded in the transition
matrix Φ:

v[k] = Φ[k, k − 1]v[k − 1] + n2[k − 1] + s[k − 1] (8)

where s[k] is a driving input that can be interpreted as the
boundary conditions of a lattice network (see Figure 2) and
n2[k] represents the process noise. Matrix Φ together with
driving inputs s[k] implements a specific linear deforma-
tion component (see Eq. (4)). More precisely, this ma-
trix models space-invariant nearest neighbor interactions
within a finite region Ω in the image plane.

The driving input s[k] is evaluated at each step, by
computing the average of optic flow velocity components
at the boundary. So, the four models are adapted to
the measures continuously. The spatial interactions oc-
cur separately for each component of the velocity vec-
tors through anisotropic nearest neighbor interconnection

schemes. Specifically, for the x component we have:

vx(i, j)[k] = wx
Nvx(i, j − 1)[k − 1] +

+ wx
Svx(i, j + 1)[k − 1] +

+ wx
W vx(i − 1, j)[k − 1] +

+ wx
Evx(i + 1, j)[k − 1] +

+ wx
T vx(i, j)[k − 1] +

+ nx
2
(i, j)[k − 1] +

+ sx(i, j)

(9)

and the same equation applies for vy . The resulting pattern
depends on the anisotropy of the interaction scheme and on
the boundary conditions. By example, considering, for the
sake of simplicity, a rectangular domain Ω = [−L, L] ×
[−L, L], the EFC m1 can be obtained through:

wx
T = 0.1

wx
N = wx

S = 0 wy
N = wy

S = 0
wx

W = wx
E = 0.45 wy

W = wy
E = 0

sx(i, j) =







λ if i = −L
µ if i = L
0 otherwise

sy(i, j) = 0

where the boundary values λ and µ are related to the co-
efficients c1 and c2, and control the gradient slope and the
constant term. In a similar way we can obtain the other
components (see Figure 2). In this way, all the struc-
tural constraints necessary to model the continuum of lin-
ear deformations are embedded in the lattice interconnec-
tion scheme of the process equation. The resulting lattice
network has a structuring effect constrained by the bound-
ary conditions that yields to structural equilibrium config-
urations, characterized by the specific first-order EFCs that
properly describe the input flow.

To describe the Kalman filtering processing, we de-
fine v̂[k|Vk−1] as the a priori state estimate at step k, given
the knowledge of the process at step k − 1, and v̂[k|Vk] as
the a posteriori state estimate at step k given the measure-
ment at step k. Vk−1 and Vk represent all the measure-
ments until step k − 1 and k respectively, the aim of the
filter is to compute an a posteriori estimate starting from
the a priori estimate and from the weighted difference be-
tween the current and the predicted measurement:

v̂[k|Vk] = v̂[k|Vk−1] + G[k](v[k] − v̂[k|Vk−1]). (10)

The difference term v[k]−v̂[k|Vk−1] is the innovation ν[k],
while the matrix G[k] is the Kalman gain that minimizes
the a posteriori error covariance:

K[k] = E{(v[k] − v̂[k|Vk])(v[k] − v̂[k|Vk])T }. (11)

The covariance matrix K[k] provides us only information
about the properties of convergence of the Kalman Filter
and not whether it converges to the correct values. Hence,
we have to measure the discrepancy between predictions
and observations in statistical terms, as an indication of the
filter’s consistency. A frequently used quantitative measure
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Figure 2. Basic lattice interconnection schemes for the el-
ementary flow components considered. By a proper choice
of the interconnection weights and of the boundary values
λ and µ the velocity profiles result approximately linear.

of consistency is the Normalized Innovation Squared (NIS)
[16]:

NISk = ν
T [k]S−1[k]ν[k] (12)

where S is the covariance of the innovation. In our model
the NIS value is used to compute the likelihood of the mea-
surement.

3.1 Multiple model approach

The structure of the optic flow approximation leads to a
multiple model adaptive estimator: we can use a bank of
parallel Kalman Filters, each with a different model (a dif-
ferent process equation embedding a generalized deforma-
tion component). We need a dynamic multiple model ap-
proach because the choice between the four possible mod-
els varies continuously while the filter is operating. In such
a case, we cannot make a fixed a priori choice of the fil-
ter parameters, but we need to use a continuously vary-
ing model-conditioned combination of the candidate state
and error covariance estimates. It is worthy to note that,
in the dynamic multiple model approach, we do not want
the probabilities to converge to fixed values, but we want
them free to change at each new measurement. In the mul-
tiple model approach [16] [17] it is assumed that the sys-
tem obeys one of a finite number of models. Thus, we must
assume that the correct model m is one among all the pos-
sible models mi with i = 1, 2, . . . , r.

The likelihood of the measurement v given a particu-
lar model mi at time step k is given by:

f(v|mi) = |2πSmi
|−

1

2 e
−

1

2
ν
T

m
i
S
−1

m
i
νm

i (13)

where mi is the considered model. The probability that
the candidate model mi is the correct one is given by the

following equation:

pmi
[k] =

f(v|mi)
∑r

j=1
f(v|mj)

(14)

with pmi
[0] = 1/r, i = 1, 2, . . . , r and

∑r

i=1
pmi

[k] = 1
at each time step k. The final model-conditioned estimate
of the state v is computed as a weighted combination of the
a posteriori states of each candidate filter:

v̂[k] =

r
∑

i=1

pmi
[k]v̂mi

[k]. (15)

For the 4 models considered (see Eqs. (4)):

v̂ = pm1
v̂

x
x + pm2

v̂
x
y + pm3

v̂
y
x + pm4

v̂
y
y (16)

where pm1
, pm2

, pm3
, pm4

are the probabilities related to
each model and v̂x

x , v̂x
y , v̂y

x, v̂y
y are the state estimates for

each Kalman filter.
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Figure 3. Multiple-model motion estimation in a road scene
taken by a rear-view mirror of a moving car under an over-
taking situations. The model-based decompositions are ev-
idenced for the same image patch for two different frames
at time k1 and k2. For each optic flow patch the motion
is estimated from the actual generalized deformation com-
ponents weigthed by the corresponding probability values,
see Eq.(15).

Combining Eqs. (4) and (16) we have:

[

v̂x

v̂y

]

=

[

pm1
â1 + pm2

â3

pm3
â5 + pm4

â7

]

+

[

pm1
â2 pm2

â4

pm3
â6 pm4

â8

][

x
y

]

(17)



from which it is possible to derive the estimated coefficients
of the affine model:

ĉ1 = pm1
â1 + pm2

â3, ĉ2 = pm1
â2, ĉ3 = pm2

â4

ĉ4 = pm3
â5 + pm4

â7, ĉ5 = pm3
â6, ĉ6 = pm4

â8

(18)
Figure 3 shows how the multiple model approach is

used to estimate the presence of the different generalized
deformation components in the optic flow. First, the defor-
mation components are adapted accordingly with the optic
flow values in input, then a probability value is associated
to each component and the final estimate is evaluated by
the weighted sum of the single components, see Eq.(15).

4 Results

To assess the performances of the approach, we applied re-
cursive Kalman filtering to optic flows related to both real-
world driving sequences and facial expressions. A “classi-
cal” algorithm [18] has been used to extract the optic flows.

If we analyze a multiple motion sequence we expect
that objects in the background have the same divergence
values, whereas other objects moving in the scene will have
a different divergence. Therefore, by mapping the sum of
c2 and c6, we are able to obtain a good segmentation of
the objects in the scene. Figures 4 and 5 show examples
of multiple motion segmentation using divergence informa-
tion for different real-world traffic scenes.

Figure 6 shows how this approach can be used to anal-
yse different areas of optic flow in a complex motion se-
quence like a facial expression. If we consider the values
of the affine model coefficients we are able to describe the
motions of the different areas of the face. In the figure five
different areas of the face have been chosen and the coeffi-
cients of the affine models have been computed and plotted
as a function of time. The relationships between the tem-
poral behaviour of these values and their spatial positions
could describe quite well the face motion.

5 Conclusions

The problem of evidencing the presence of a certain com-
plex feature in the optic flow is an important step towards
motion segmentation. We have shown that it is possible to
solve this problem on the basis of both direct input and con-
textual information, by recurrent adaptive filtering of the
optic flow. Direct information comes from the input mea-
sures and the context from reference signals, represented
as a set of specific linear models. Kalman-filter based
techniques to switch between models have been known for
some time in the control literature [16]. Here, we propose a
similar approach to permit multiple linear models as multi-
ple competiting hypotheses. Accordingly, the multi-model
Kalman Filter yields the optimal estimates of the weights
of the adjustable linear models. A great potential advan-
tage of the multiple-model approach is that recognition and
feature extraction can be performed jointly, and so the form

frame 2 frame 20 frame 30

Figure 4. Example of multiple motion segmentation. The
camera is moving towards the van that is crossing the street.

frame 50 frame 53 frame 60

Figure 5. Example of multiple motion segmentation. The
camera and the car are moving along the same direction.

of the expected linear component can be used to guide fea-
ture search, potentially making it more efficient and robust.
The use of linear models to analyze image motion has been
previously investigated in [7], where the authors proposed
the use of parameterized motion models to represent com-
plex motions. In that paper, they adopted both linear and
learned basis flow fields to describe the motion of large
portions of the face. Here, by considering small areas of
facial expression, we are able to approximate image flows
with linear models. A systematic comparison between the
two approaches will be tackled in a future work.
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Figure 6. Top: five frames from a facial expression sequence. On the first frame the letters indicate the positions of the analysed
areas. Middle: Optic flows computed from the sequence. Bottom: temporal evolutions of the six affine model coefficients for
the five selected positions (a-e).

a driving-school scenario (DRIVSCO)”.
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