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Abstract. The goal of this review is to discuss different strategies employed by the visual

system to limit data-flow and to focus data processing. These strategies can be hard-
wired, like the eccentricity-dependent visual resolution or they can be dynamically
changing like mechanisms of visual attention. We will ask to what degree such strategies

are also useful in a computer vision context. Specifically we will discuss, how to adapt
them to technical systems where the substrate for the computations is vastly different
from that in the brain. It will become clear that most algorithmic principles, which are

employed by natural visual systems, need to be reformulated to better fit to modern
computer architectures. In addition, we will try to show that it is possible to employ
multiple strategies in parallel to arrive at a flexible and robust computer vision system
based on recurrent feedback loops and using information derived from the statistics of

natural images.

Key words: mid-levelvision, multi-modal processing, feature integration

1. Introduction

Serious attempts to create machine vision systems have now a history of
about 30–40 years. In spite of this extended period of research and
development, we find ourselves in a position that these systems are still
exceedingly limited in their performance. Machine vision problems have
essentially been addressed using two different approaches, the engi-
neering and the biological approach, which were, however also often
mixed. The undisputed power of our own visual system very strongly
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suggests that machine vision systems should also follow a ‘‘neuronal
approach’’, if only we would know, how the brain does it . . . As a
consequence machine vision systems are still wedged in-between the
technological restrictions imposed by current cameras and computers
and the limited knowledge about biological visual processing. Only
more recently a better understanding of some fundamental neural
processing principles has been reached, especially about the dynamic
interactions that take place between different areas in the visual path-
way.

This review article will discuss briefly a wide variety of different ac-
tive or passive, overt or covert mechanisms known from the visual
system and used, to some degree, in modern machine vision systems to
improve image analysis. This is meant to provide an overview across the
different strategies employed by the visual system to arrive at a flexible
and highly functional mode of operation. In view of the different
structure of technological versus biological systems, we will ask the
question to what degree this kind of natural computation should be
copied by modern machine vision system. Should such systems really
include all these aspects or is there a chance to arrive at functional
abstractions which allow reducing the effort while leading to the same
good results? Furthermore we will discuss some more novel ideas about
active, task-dependent vision adopting the view-point that efficient vi-
sion systems can only be built when they close the perception–action
loop (at least by internal processing, if not by active behaviour). The
second part of this article will present results obtained in the context of a
large European project group where we are building a multi-modal,
task-focused image processing system based on abstractions of mecha-
nisms which are found in the vertebrate visual system.

2. Mechanisms to control visual input flow

Only rather recently it has become clear that vision must be regarded as
an active process, where the vision system (the observer) decides what
he/she ‘‘wants’’ to see leading to enhanced resolutions there and limiting
the data-flow elsewhere. At first this seems paradox, because our eyes
are taking in everything with which they are faced, or don’t they? Thus,
this notion needs some explanation. Obviously, we perform eye- and
head-movements and thereby actively guide our visual perception to
some degree. This overt behaviour has rather early also been built into
machine vision systems (Aloimonos et al., 1987); only more recently,
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however, it was accompanied by the notion that there must be brain-
intrinsic, covert mechanisms, too, which support active perception.

Marr’s seminal book on early vision (Marr, 1982) still treats vision as
a bottom up filter-process. Camera pixels are combined into higher level
entities, for example edges. This way different levels of representation
are obtained, for example a ‘‘primal sketch’’ which makes properties of
the 2-D image explicit, a – in Marr’s terminology – 2½-D sketch which
is a viewer centred representation of the visual scene and finally a 3-D
reconstruction of the scene in world coordinates. About at the same
time, however, it became clear that advanced vision systems also need
built-in knowledge (memory) without which higher level processes such
as object recognition cannot take place. After all, how would the con-
cept of objects emerge from the simple geometrical entities that Marr’s
analysis provides? Early attempts towards object recognition tried to
solve this problem within rather restricted environments, for example
limiting the number and geometrical configurations of the objects in the
scene (for a critique of this approach see Brooks (1991)). While this may
work, soon it became clear that our visual system operates in a more
general way: We are able to recognise an object (e.g., a cup) regardless
of how it is placed, we can generalise easily subsuming all kinds of
containers into the concept of a ‘‘cup’’, and we can recognise a vast
number of objects on a breakfast table and not only the cup. All this
knowledge cannot be built into machine vision systems in a naive top-
down manner, it is just too much and too diverse. This problem is also
known as the ‘‘bias-variance’’ dilemma (Geman et al., 1995). If you
build too much bias (Knowledge) into a system you are reducing the
variance that it can express, which means the degrees of freedom that it
can show when confronted with a novel situation are reduced.

The combinatorial explosion problem which arises when trying to
cover each and every aspect of the diversity of ‘‘the world’’ also raises
two more issues, for which experimental support shall be provided be-
low: (1) It is inconceivable that our vision system analyses each part of
the scene with the same accuracy. (2) It seems highly unlikely that our
vision system ‘‘jumps’’ from any kind of early visual representation
directly to the stage of object recognition. Instead, one should assume
that there are intermediate scene analysis steps interspersed in-between.

We will discuss experimental support for this next. Let us, however,
first point out that these two notions have recently been combined
realizing that the human visual system seems to actively make proba-
bilistic guesses about sub-structures in the scene and that these guesses
are guided by the currently existing task that the observer performs
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(Rao and Ballard, 1999; Körding and Wolpert, 2004). Thus, there are
not only intermediate visual representation levels existing, but these
levels can be actively influenced by the observer which leads to a
changed functional resolution of the analysis at different locations in the
visual field (on top of the existing visiotopic maps).

First, we will briefly review some of the older known facts about
space- and context-dependent changes in visual resolution as well as
overt (behaviourally expressed) active vision, before we embark on the
more complex aspect of modern ideas about covert active vision. The
second part will also try to show how Gestalt laws emerge in a natural
way from recursive, multi-modal image processing (Prodöhl et al., 2003;
Spillmann and Ehrenstein, 2004).

2.1. Structuring the visual input – Cortical maps

It has been know since around 1977 that visual topography and several
visual features are represented in an orderly fashion in the cortex (for
reviews see Erwin et al., 1995; Swindale, 1996; Chapman, 2004). In a
first approximation, the radial coordinates of the visual hemifield that
projects to a hemisphere are transformed by the complex logarithmic
function onto the cortical surface in area V1 (Schwartz, 1977, 1980; but
see Johnston, 1986 for a critical review of this proposal and an alter-
native structural model). As a consequence, the central visual field
around the fovea is strongly magnified at the cortical surface while the
periphery is underrepresented. This transformation leads to the effect
that concentric circles (i.e. on the retina) are mapped onto equally
spaced vertical lines while radial lines will map onto horizontal lines (on
the cortical surface). In addition, the properties of such a complex
logarithmic mapping lead to scaling for objects that increase in image
size in proportion to visual eccentricity and rotational invariance. More
complex topographical representations have also been observed and
modelled in higher cortical areas (Mallot, 1985). Since these topo-
graphical representations are almost everywhere continuous (at least in
the lower visual areas), they allow utilising neighbourhood relationships
for processing. This is an obvious advantage, because the structure of
our world is such that neighbouring entities will with a greater likeli-
hood belong together than those that are not adjacent to each other
(Gestalt-law). This will also lead to higher accuracy in the processing
when utilising interpolation processes between such adjacent ‘‘pixels’’.
In addition, it has been found in the lower cortical areas that responses
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from the two eyes are essentially represented in different, interleaved
slabs of the cortex (ocular dominance maps, Chapman, 2004). Cortical
cells in V1 respond preferentially to oriented stimuli and also orienta-
tion preference is represented in a map. If one performs two-dimen-
sional Fourier analysis of such orientation maps, one will for many
species, obtain a (distorted) annulus shaped spectrum (Niebur and
Wörgötter, 1994). This points to the fact that orientation preference is
repeated along the cortical surface on average with a constant frequency
along all directions (hence isotropically) and that orientation maps are
homogeneous and ‘‘look the same’’ at every location in V1 (Niebur and
Wörgötter, 1994). Cells with enhanced colour preference are inter-
spersed in these orientation maps and form blob-like clustered groups
(Wong-Riley, 1979; Livingstone and Hubel, 1984; Ts’o and Gilbert,
1988) in V1. Indications exist that also visual disparity is represented in
a map-like structure in V2 (Hubel and Livingstone, 1987; Ts’o et al.,
2001). Other features, like velocity or direction preference, do not follow
a map-like arrangement, but clustering is observed as well. In V2 maps
follow a thick-stripe, thin-stripe, inter-stripe structure for colour and
orientation, essentially also almost everywhere preserving the neigh-
bourhood property (Livingstone and Hubel, 1984; Peterhans and von
der Heydt, 1993; Shipp and Zeki, 2002a, b). We defer the reader to
the literature for details about these maps and their models (Erwin
et al., 1995, Swindale, 1996; Chapman, 2004). Here we will focus on
the question, how such structures can facilitate image processing
instead.

2.2. Limiting the visual input

2.2.1. Eye- and head-movements
The above discussed topographical representation implicitly leads to the
situation that only the central part of the visual field (fovea) is analysed
with high accuracy. As a consequence, it requires substantial effort if we
want to see what happens in the periphery without moving our eyes.
However, even when concentrating on the periphery we will not be able
to distinguish finer details. Such an architecture leads to the advantage
that less neuronal machinery is required in the periphery as compared to
the fovea, effectively limiting the visual input. Accordingly receptive
fields are narrow in the fovea and much wider outside (Zeki, 1978;
Adams and Horton, 2003).
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Head- and eye-movements have been ‘‘invented’’ to solve the prob-
lem of reduced peripheral resolution and soon the same mechanisms
have been introduced into artificial systems as well. Concerning pre-
motor aspects, similar mechanisms might actually underlie covert and
overt shifts of attention and gaze (respectively) (Rizzolatti et al., 1987;
Hamker, 2003). The neuronal (and technical) control mechanisms re-
quired for an overt goal directed gaze, however, are complex and con-
stitute their own area of research. This article will not cover any of these
aspects because we would like to focus on covert mechanisms instead.

2.2.2. Attention
The most notable covert mechanism is visual attention which leads to a
substantial reduction of the amount of input that needs to be processed
by dealing only with the momentarily most important visual informa-
tion.

An operational definition of attention can be given with: Exposed to
a number of stimuli, that are equal in their physical appearance, both
animals and humans can respond to certain stimuli while neglecting
others without having to move head or eyes. This internal, covert spatial
focus is the basic operation of selective attention. From a computational
point of view, one can distinguish bottom-up versus top-down mecha-
nisms of visual attention. Bottom-up (pre-) attention is data driven and
involuntary. Any kind of salient stimulus will automatically attract our
attention. Bottom-up mechanisms account for pre-attentive effects like
the pop-out phenomenon. These effects are transient, because the sal-
iency of a new object decays with time, and they are fast, allowing for
quick reactions. Speed is assured by low-level mechanisms and points to
the involvement of early visual processing levels like thalamus and
primary visual cortex.

By contrast, top-down attention acts on a different time scale of up to
several seconds and it represents effects of voluntary attention. This
task-driven form of attention to a specific region of interest must involve
high-level regions, i.e. those responsible for cognitive functions.

2.2.3. Psychological and computational models of selective attention
Psychophysical reaction time studies provided early evidence for the
existence of covert visual attention (see Treisman, 1969; Posner et al.,
1982; Wolfe, 1998, for reviews). Subjects were asked to find targets in a
visual display and when a valid cue was given before the target pre-
sentation, reaction times were significantly reduced.
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The results of several years of research led to the formulation of
many different hypotheses as to how these search experiments could be
explained, e.g. Treisman’s feature integration theory (Treisman and
Gelade, 1980) or Julesz’s texton theory (Julesz, 1981). Many of the
proposed models share the spot- or searchlight paradigm (Broadbend,
1965; Neisser, 1967; Crick, 1984) as the same basic idea: It has two
stages. First, as soon as a new stimulus is presented, the whole visual
field is processed in parallel during the pre-attentive mode. When this
mode does not suffice, e.g. when the task is complex (conjunctive
search), a different, second strategy is needed. Then, only a limited area
is highlighted and analysed in detail, whereas the rest is processed with
less priority. In a serial process, the whole field is scanned. Since not all
search experiments could be explained by the purely bottom-up ap-
proach of the searchlight hypothesis, top-down components were added
to the model and different more complex models were devised (Desi-
mone and Duncan, 1995; Wolfe, 1998). Over the years, many hybrid
models have been developed which integrate serial, parallel, bottom-up
and top-down processing (e.g. Grossberg et al., 1994).

The computational models of selective attention are mainly con-
cerned with the problem of how a focus of attention can be selected and
how its information can be routed through the network, treated, for
example by the so-called selection and routing models. A second class of
model deals with the question of how to implement selective attention
with neurons (tagging models): Those neurons under the focus of
attention will have to change their (temporal) firing characteristic
(Niebur et al., 1993).

2.2.4. Neuronal basis for selective attention
One of the first cellular studies of selective attention was made by Wurtz
et al. (1982). Experiments were carried out in awake primates while
recording neurons from the superior colliculus (SC), striate cortex (V1)
and posterior parietal cortex (PP). The basic finding was that cells in V1
and in SC responded with a higher firing rate when the animal oriented
to an attracting spot with a saccade, while there was no change in
response when the animal maintained fixation at a central spot and only
shifted its attention covertly. PP neurons, in contrast, also show an
activity enhancement due to covert shifts of attention. Moran and
Desimone extended the first approach by showing that also neurons
from the inferior temporal cortex (IT) and from V4 behave differently
during an attention task (Moran and Desimone, 1985). In their exper-
imental setup, two objects were placed inside the receptive field of an IT
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neuron, one being an effective stimulus for that neuron and the other
ineffective. If attention was focused on the ineffective stimulus, the
activity of the neuron decreased, while it increased if attention was on
the effective stimulus. It seems as if the receptive field shrinks around the
attended object. Similar attentional modulations have been found in
other areas and with other techniques (Büchel and Friston, 1997;
Connor et al., 1997; McAdams and Maunsell, 1999; Treue and Martinez
Trujillo, 1999; Maunsell and McAdams, 2001).

2.2.5. Arousal
Arousal is a second mechanism which probably also leads to a restric-
tion, albeit more globally, of the information flow into the visual sys-
tem. For example, the degree of synchronisation of visual cortical
responses as reflected in the EEG can be influenced in a longer lasting
way by electrical stimulation of the brain stem (Munk et al., 1996)
experimentally inducing an aroused state of the animal.

The state of arousal is normally reflected in the frequency content of
the EEG. During drowsiness a-waves (approx. 8–13Hz), interspersed
with H-waves (4–7Hz), prevail, while deep sleep is characterised by a
so-called synchronised EEG mainly containing d-waves (approx. 0.5–
4Hz). During alert wakefulness mainly b-waves (approx. 13–30Hz) are
observed (non-synchronised EEG). Spontaneous state-transitions occur
even in the anesthetised preparation. These spontaneous transitions are
strongly correlated with dramatically changed response characteristics
of the cortical afferents – the thalamic relay cells (Funke and Eysel,
1992). During synchronised EEG (‘‘drowsiness, sleep’’) thalamic cells
are hyperpolarised (Dossi et al., 1992) and respond in the so-called
‘‘burst-mode’’: spontaneous activity is low and responses to stimulation
are dominated by brief high-frequency bursts (for a review see Steriade,
1991). Intriguingly, the temporal behaviour of cortical cells upstream of
the thalamus was much less affected by EEG state changes (Ikeda and
Wright, 1974). The spatial structure of the receptive fields, however,
was; and we observed that cortical receptive fields decreased in size
when EEG switched from the synchronised to the non-synchronised
EEG state (Wörgötter et al., 1998). This effect can be attributed to a
changing effective connectivity of the thalamocortical synapses during
different EEG states. Part of these effects seems to be mediated by the
thalamo-cortico-thalamic loop, because the EEG dependency of cortical
response is removed when chronically eliminating this feedback loop
(Wörgötter et al., 2002; Eyding et al., 2003).
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2.3. Context sensitive receptive fields

So far we have discussed rather global mechanisms for the control of
information flow in the visual system: Attention and Arousal. There are,
however much more local mechanisms existing which operate at the
level of single receptive fields, which can also be interpreted in the sense
of information flow control. Of particular relevance for visual infor-
mation processing are those studies that showed how cortical cells
change their responses in a context dependent way.

2.3.1. Direction selectivity
Experiments performed in cats by the groups of Hammond and Orban
(Hammond and McKay, 1975, 1977, 1981; Gulyas et al., 1987, 1990;
Orban et al., 1987, 1988) showed that the perception of relative motion
and some motion after-effects are influenced by context dependent
receptive field effects. It was found that responses to relative motion are
amplified which could underlie the similar enhancement effect observed
at the perceptual level. In addition, it was observed that large field, uni-
directional background motion leads to adaptation of those cells, which
are selective for this particular direction.1

2.3.2. Orientation selectivity
A different group of experiments demonstrated that the orientation
tuning of cortical cells is also affected by the stimulation context and a
wide variety of effects were observed (Gilbert and Wiesel, 1990; Knierim
and v.Essen, 1992; Lamme, 1995; Sillito et al., 1995; Sillito and Jones,
1996; Zipser et al., 1996; Das and Gilbert, 1999). Of particular relevance
for a guided information processing could be two effects: (1) Presenting
a stimulus with preferred orientation in the receptive field centre to-
gether with many orthogonally oriented surround stimuli will enhance
the response while similar orientations in the surround will suppress it
(Knierim and v.Essen, 1992; Jones et al., in press). (2) Cells also adapt to
stimulus orientation in a way that is similar to motion adaptation (see
‘‘waterfall effect’’, above). After prolonged presentation of a sinusoidal
grating, the orientation preference of the cells will shift away from the
orientation of the grating stimulus (Dragoi et al., 2000).

Above, we had briefly discussed pop-out phenomena in the context
of visual attention. Here we argue that both findings could contribute to
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the perception of ‘‘orientation pop-out’’. This is the effect that in a
field of similarly oriented lines any group of lines that has a signifi-
cantly different orientation will immediately ‘‘pop-out’’, making serial
search unnecessary (Lamme, 1995; Kastner et al., 1997; Nothdurft et al.,
1999).

2.3.3. Receptive field size
Also the phenomenon of perceptual filling-in could have a direct neu-
ronal correlate at the level of receptive fields in striate cortex. To
demonstrate this, a grey area was centred on the receptive field of a cell
within a surrounding pattern of moving lines or twinkling dots. After
prolonged presentation of this stimulus it was shown that receptive
fields inside the grey area are significantly expanded (Pettet and Gilbert,
1992; Volchan and Gilbert, 1994; Gilbert, 1998). The robustness of
this effect, however, was questioned by other groups (DeAngelis et al.,
1995; Chapman and Stone, 1996) which may have been a consequence
of a different interpretation of the data, though (Chapman and Stone,
1996).

The observations described in the previous section have demon-
strated that significant spatial influences arise from regions that are
distant from the classical receptive field. All these effects alter the re-
sponse of the neurons essentially in a way that any stimulus which
contains a degree of novelty is passed on while predictable situations are
less strongly valued and which can in some instances be interpreted in
terms of visual perception.

2.4. Summary of the older findings

The above sections have discussed six aspects that guide and limit the
input data-flow into the visual system. (1) A higher visual resolution
exists at the fovea as compared to the periphery. (2) Map-like structures
exist in the visual areas which possibly connect computationally relevant
features more efficiently with each other (the simplest example being
neighbourhood relationships). (3) Eye- and head-movements are per-
formed to direct the gaze to the location of interest. (4) Visual attention
leads (very likely) to a reduced data flow at uninteresting image loca-
tions, while those that draw our attention are being analysed with
greater detail. (5) Mechanisms of arousal lead to enhanced visual
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processing capabilities when alert, while they may be reduced during
drowsiness. (6) Visual receptive fields alter their spatial and temporal
properties in response to the context within which a stimulus is
presented.

All these mechanisms are used to enhance and optimise the com-
putational power of our visual system. The first group (1 and 2) rep-
resent essentially hard-wired properties laid down in the anatomy of the
visual system. The third aspect reflects clearly an overt behavioural
strategy. Aspects 4 and 5 represent more covert mechanisms to control
the input flow. Here we would think arousal related effects are not very
important for machine vision systems which do not need to rest. The
last aspect (6), where we have discussed that receptive fields are context
sensitive, represents a truly covert mechanism, which must be rooted in
the dynamical structure of the different networks involved. The mo-
ment-to-moment changing effective connectivity (Aertsen et al., 1989)
between neurons, which is determined by the sum of all their inputs,
controls these effects.

In the next sections we would like to discuss two questions: (1) How
should visual information be represented at higher processing stages?
Thus, asking what higher level receptive fields should look like to
facilitate processing. And (2) How a given task will influence visual
processing? (Figure 1).

3. Intermediate levels of visual representation – recurrent processing in

vision

In the introduction we had stated that neither purely data-driven, feed-
forward nor purely knowledge-driven top-down processing mechanisms
were successful for solving the machine vision problem. Data-driven
mechanisms do not lead to any ‘‘understanding’’ of the objects analysed
in a scene. For knowledge-driven mechanisms a different problem exists:
The knowledge of the system has usually been built into it by its de-
signer. Hence, it’s the designer’s knowledge and not the system’s. The
system’s data-processing structures are vastly different from that of its
designer, its input signals are not the same and the way it calculates is
also different. Thus, there is always a necessarily existing mismatch
between the way knowledge is represented in the system as compared to
its designer. Furthermore – and even more problematic – the designer
can never foresee all relevant events for the system such that imposed
knowledge will have to be incomplete or sometimes irrelevant. Dennett
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(1984) has called this the ‘‘frame-problem’’: The system’s frame of ref-
erence for its analysis of a visual scene is necessarily different from the
designer’s frame of reference. This was the central problem that tradi-
tional AI (artificial intelligence) had faced. The computer vision com-
munity, however, has not given this much of a consideration so far. This
has resulted in many rather naive approaches towards advanced scene
analysis which were exceedingly limited in their performance. As a
consequence, this has led to a rather critical perception of any approach
towards scene ‘‘understanding’’.

So the question arises: What is missing? Why are humans so good at
scene understanding, while general purpose machine vision systems still
fail miserably?

Obviously, there is at the moment no clear answer to this. However,
during the last years many neuroscientists have suggested that the
solution to these problems may lie in the recurrent and parallel signal
processing properties of the visual pathway. Several parallel processing
streams exist in the visual system, e.g., the ‘‘what’’ and the ‘‘where’’
pathway, where predominantly form and location/movement are pro-
cessed (for a recent review see Ungerleider and Pasternak, 2004).
Receptive fields in these pathways are getting increasingly more complex

Figure 1. The concept of visual primitives. (A) A stereo pair from an image sequence.

(B) Magnification of an image part. (C) Primitives extracted from this image part. (D)
The symbol used to present a primitive. Encoded are colour (red versus blue), orien-
tation (line in the middle), Optic flow (arrows), The long line points to the corre-

sponding stereo match in the other primitive-image, which is omitted here. In (C) the
same symbols are used. (E) A scene recorded while driving (left image from a stereo
pair). (F) Resulting primitives at low magnification.
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at higher level of hierarchy. This, however, is not only the result of feed-
forward afferent wiring; much more important are the influences of
feedback within an area and from higher areas to lower ones. Through
this feedback a highly dynamic recurrent processing architecture
emerges that leads to the self-emergence of advanced features. This has
been nicely demonstrated by the studies of Somers et al. (1995) and
Suarez et al. (1995) which have shown that local excitatory feedback can
lead to the self-emergence of sharp orientation tuning or to the gener-
ation of direction selectivity. Less, however, is known about the influ-
ence of higher order feedback mechanisms, for example about the
feedback between cortical areas. It has been suggested that such
mechanisms might be used to refine the afferent data flow and to restrict
it. Here, Rao and Ballard (1999) have suggested that predominantly
unpredictable events are parsed to the higher areas, while predicted
events will be processed with a lower priority.

3.1. Multi-modal processing of stereo information

The above discussed neuronal mechanisms cannot be directly used in a
computer vision context and more abstract representations are needed
to achieve similar ends. Recently we have proposed (Krüger et al., 2004)
to use a specific type of multi-modal, local representation, called a visual
primitive to facilitate computations. Primitives are making use of low-
level feature extraction which yield orientation, edge-information
(Felsberg and Sommer, 2001), colour, optic-flow (Nagel and Enkel-
mann, 1986), and stereo disparity information (Krüger et al., 2002). In
addition, these primitives also carry information about edgeness and
junctionness in for of confidences (Felsberg and Krüger, 2003; Krüger
and Felsberg, 2003). The low-level features are computed pixel-wise.
However, the Primitives represent this information in a condensed way
(97% compression). A sparse and meaningful representation is created
where the number of primitives is much smaller than the number of
original pixels. In a very abstract sense, these primitives could, thus, be
associated to hypercolumns in the visual cortex (Krüger et al., 2004).
This offers the advantage that the next image processing stages have to
be performed only on a much reduced number of inputs that however
have a higher semantic meaning (data condensation). In the next stages,
these primitives can be used to perform grouping and motion analysis
(Krüger and Wörgötter, in press). In order to perform grouping, we rely
on some statistically significant properties of images, most importantly
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on the fact that collinear line segments prevail in a scene (Krüger and
Wörgötter, 2002).

Thus, if line segments are collinear, it seems more likely that they
belong to the same object. When relying only on collinearity, the con-
fidence in such a ’guess’ is still rather low. However, one can take also
other features into account; for example, colour, disparity and flow and
perform multi-modal line processing. Hence, if a pair of collinear lines
shares the same colour, disparity, and flow, then it is much more likely
that it belongs to the same object (Figure 2B). In a similar way, we can
improve stereo estimation by assuming that only that particular stereo
pair is correct that at the same time also shares other features. Such
multi-modal stereo processing leads to a first sorting out of false stereo
matches (Figure 2C and D; Krüger et al., 2002; Pugeault and Krüger,
2003).

Normally, however, we are still left with many false stereo matches
and many wrong line combinations after having performed these two
steps of multi-modal processing. But now we can go one step further and
combine multi-modal line information with multi-modal stereo infor-
mation: If I have found a set of possible stereo matches for one given line
in the left (or right) image, then that particular match which also belongs
to a collinear pair is highly likely to be the correct one. Figure 3 dem-
onstrates the idea behind this and shows how false matches can be
eliminated by employing this mechanism to a real scene. Of course this
argument is symmetrical and we can also sort out wrong line-matches on
the grounds of stereo information (Pugeault et al., 2004).

In the next step, also motion information is integrated into the
common image analysis scheme (Figure 4). Here we rely on the rigid
body motion (RBM) principle: If the motion parameters in a visual
scene are known, and if its objects are rigid, then it is at least in principle
possible to predict the development of the scene ad infinitum (see, e.g.
Krüger and Wörgötter, in press). While this principle sounds simple,
nevertheless, several requirements have to be fulfilled (Figure 5). To
calculate the RBM, it is necessary to track a number of corresponding
image entities for every moving object in a reliable way. Thus, noise,
occlusions, and the ever prevalent correspondence problem interfere
with this requirement. In addition, RBM requires calculations in the 3D
real-world domain. Thus, 3D coordinates have first to be reconstructed
from the (cleaned-up) stereo pairs before the RBM can be determined.
The goal of using the RBM principle is to predict how a scene would
develop. Hence, we must then calculate the 3D coordinates for the next
stereoscopic camera frame pair and we must also be able to re-project
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the 3D coordinates onto the 2D image domain. Only this way we can
finally compare the re-projected coordinates with the ones obtained
from the next frame-set. All these steps require solving several tedious
technical problems before such a scheme will robustly work.

Figure 2. Influence of multi-modal processing on the confidence of collinearity esti-
mation (A,B) and of stereo matching (C,D). (A) Schematic of the processing principle.

Collinearity of orientation is by itself not sufficient to guarantee the existence of an
uninterrupted line. Only in the left part of each panel a line can be inferred with some
confidence from the existence of multi-modal matches of different image features. (B)

The increase in the confidence in a collinear line pair can be statistically measured. For
details see Krüger and Wörgötter (2002). For a given line segment the numbers at the
abscissa refer to the distance from this line segment. A priori collinearity becomes less

likely at greater distances. Different bar show, how confident one can be, in a found
collinear pair. Confidence is lowest when only the orientations match (which is the
minimal condition for a pair to be collinear). When all features match, confidence is
highest. (C,D) Stereo matches for an artificial stereo pair; one image of which is shown

in the inset. Large panels represent a reconstructed a top view (X–Z axis view). In (C)
only orientation was used to determine a stereo match and many wrong matches exist.
In (D) stereo matches where calculated using all other multi-modal image features

(except flow, because these are still images).
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Figure 6 shows some results obtained with artificial and real scenes.
This data shows that only primitives which belong to the edges of an
object are confirmed (white) across multiple frames, while all others will
eventually be sorted out (black).

In summary: In this section, we have shown how to improve image
information by combining stereo-disparity analysis with other visual
modalities like colour, orientation and contrast transition information.
Finally, we have also added motion information in order to more reli-
ably extract 3D information from visual scenes.

In the next section, we will focus on optic flow analysis and ask how
we can analyse the different flow patterns in a scene which arise from
ego-motion as well as from the motion of individual objects. This adds
on to the use of RBM by providing us with a flow-based image seg-
mentation in parallel to the above described multi-modal processing

Figure 3. Finding stereo matches based on lines. (A) Processing principle. In the left and

right image two highly probable collinear line segments have been found, but only for
one (top) a good multi-modal stereo match exists. This may be due to the perspective
distortion which may have led to a bad matching situation for the bottom pair. How-

ever, the strong confidence that both pairs belong to lines leads to the assumption that
also the bottom stereo match must be correct. (B) One image from a driving scene. (C)
Multi-modal stereo matches (top view) found without taking line-correspondences into

account and (D) with line-correspondences. The number of wrong matches is sub-
stantially reduced in (D).
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Figure 4. Multi-modal processing of stereo and motion. (A) The big ellipse shows the
processing steps for stereo as described in Section 3.1 above. Combining this with

rigid body motion estimation, as described below, we can predict the development of
the different stereo pairs in the next camera frames and compare the prediction
with the actually obtained results. (B) Processing of optic flow. For explanation see

Section 3.2.

Figure 5. Including rigid body motion in the processing scheme for stereo. 2D infor-
mation must be transferred to Euclidian space to calculate the RBM (2). This allows

predicting the next set of 3D coordinates (1) which are back-projected into the 2D image
space (3) and then compared with the actually obtained results from direct stereo cal-
culations (4).
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steps. Why is this useful? Three aspects stand out: (a) As can be seen from
the examples in Figures 3 and 6, the above described multi-modal pro-
cessing is still not fully error-free and cross-checking with the image seg-
mentation structure will further improve on this. (b) One result of the flow
analysis described next is accurate information about the heading direc-
tion of the observer. This in itself is valuable for navigation purposes and
(c) along the same lines: Quickly obtained information about the general
structure (segments) of all moving objects, even if this information is
coarse, is very valuable for obstacle avoidance and other related tasks.

3.2. The processing of optic flow

Optic flow analysis is mainly haunted by the so-called aperture problem:
If an edge is viewed through a small aperture then only the ‘‘normal’’
motion-component, which is the one orthogonal to the orientation of
the edge, will be resolved. This leads to the effect that all algorithms
used to analyse flow will at edges yield normal flow as a result. Only at
corners can true optic flow be measured. In addition, flow cannot be
determined at untextured, smooth surfaces. Thus, flow-field maps al-
ways consist of many false estimates with only very few correct flow
vectors and it is a very hard problem to extract meaningful information
from such a map. Since observers are almost never entirely motionless
themselves, it is, however, fair to say that most of the time a flow-field
map will be dominated by the ego-motion flow pattern. Thus, to achieve
improved flow analysis we have adopted a two-step strategy (Figure 4):

Figure 6. Results from including rigid body motion in the stereo processing calculated
accumulating the information over 10 frame pairs. (A) Uncorrected matches, all mat-
ches after 10 frame pairs are shown and it is evident that mainly the black, wrong
matches dominate. (B) Corrected matches superimposed onto the scene. The sky was

artificially darkened to be able to show the confirmed matches in white.
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First, we determine the ego-motion flow component (‘‘heading’’) and
‘‘subtract’’ the resulting flow-field from the originally measured one.
Then, we can find the other independently moving objects (IMOs) by
analysing the residual error. Thus, this process amounts to scene seg-
mentation into different moving objects.

To robustly extract ego-motion, we have invented a technique which
utilises a neuronal property of the cells in the middle temporal area
(MT) of monkey brain. In this area, big flow-sensitive receptive fields
exist (Albright and Desimone, 1987). These fields scale with visual
eccentricity, thus, fields that represent larger eccentricities are larger
than those close to the fovea. As a consequence, it has been concluded
that these fields average the flow to increase the robustness of its
representation (Lappe, 1996). To this purpose, we have implemented

Figure 7. Processing of optic flow. (A) Flow field obtained with the Nagel algorithm.
(B) Range image of an outdoor scene taken from the Brown Range Image data base
(Huang et al., 2000). These images contain for all pixels the complete 3D information

from laser range finder measurements. By geometrical extrapolation a movie of 10
frames has been created from this image which simulates a certain heading. True
heading direction is given by the black square. Little white squares are estimates of the

heading by analysing 150 randomly selected flow vectors from the flow field in (A). The
black disc represent the average of these heading estimates. Clearly the individual
estimates are widely scattered and their average is also not in correspondence with the
true heading direction. (C) Flow field after MT filtering. The size of the used filters is

indicated by the circles superimposed onto (A). The filtered flow field is much smoother.
(D) Same as (B) but now the heading estimates are calculated from the MT-filtered flow
field. Individual estimates are good and the average closely matches the true heading

direction.
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similar receptive field filters. The filtering technique improves the sta-
bility of the flow representation by averaging flow vectors within local
neighbourhoods to stabilise the motion signal. Based on the properties
of area MT this filtering method decreases noise by averaging flow
vectors over image areas, which increase in size proportional to the
eccentricity from the centre of the field of view (Figure 7A and C).

While averaging over large areas is more favourable for noise
reduction and smoothing, averaging over small areas saves information
such as local speed and velocity or local motion parallax. The spatial
integration over peripherally increasing image areas is a compromise
between both goals and well adjusted to the typical structure of the flow
field elicited by self-motion. Small areas surrounding the centre of the
view field contain sets of vectors with large deviations in the local flow
direction, whereas the flow field in the periphery is more homogeneous
allowing spatial averaging over a large scale without loosing informa-
tion. The filter procedure results in an improved representation of the
flow that is especially well suited for self-motion estimation (Figure 7A
and C). The next stage of flow analysis, the heading estimation stage,
acts on this representation. It is modelled after the next area of flow
processing in the visual system, area MST (Lappe, 1998).

The MT-like filtering model was tested with optical flow fields ob-
tained from image sequences with an optical flow algorithm. These tests
involved both simulated camera motion through a natural scene with
ground truth (Calow et al., 2004) and real motion sequences recorded in
a moving car. To estimate performance improvements with respect to
unfiltered optic flow, we randomly selected 150 flow vectors for a single
run of the heading estimation and computed mean and standard devi-
ation over several runs (Figure 7B and D). How the heading is actually
determined will be discussed below. Here, Figure 7B and D shows first
that MT-like filtering strongly improves the results. After MT-like fil-
tering the width of the distribution of estimated headings dropped from
25� to 6�, the average error from 12� to 4�. These results demonstrate
that MT-like filtering is a reasonable strategy to decrease noise in
optical flow fields and to improve heading detection. The method works
well on optical flow fields based on natural scenes affected by strong
noise and the aperture problem.

The actual heading can be performed in different ways but we rely on
an algorithm with which we can calculate heading as well as extract the
motion patterns of other objects at the same time. In realistic scenes, the
motion field generated by a moving observer is highly complex. This is
primarily due to the interactions between translational and rotational
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motion, the depth layout of the environment and the presence of IMOs.
Nonetheless, often not more than a few entities are responsible for this
motion field. The largest amount of structure is due to the observer’s
egomotion as discussed above, hence determining the latter is an
important step towards the discovery of IMOs. The structure of Figure
8B shows how we extract such motion gestalts from optical flow fields.
The algorithm consists of three main components which operate
simultaneously. First, a novel method for the extraction of all egomo-
tion parameters from optic flow fields has been developed. Using fixed-
point iterations, the method robustly and efficiently deals with the
nonlinear interaction between translation and rotation parameters.
Thus, complex combinations of translation and rotation can also be
reliably extracted. A second component corrects the intrinsic bias in the
translation estimate that originates from the error norm used by most
instantaneous-time egomotion algorithms. Finally, IMOs are consid-
ered as outliers and techniques from robust statistics are applied to
make the egomotion estimation insensitive to their presence. Once the
observer’s motion parameters are extracted, IMOs are identified by
evaluating the residual errors of all flow vectors against the egomotion
model. Note that this approach can also cope with non-rigid IMOs.

The algorithm is demonstrated on a synthetic data set (McCane
et al., 1998) for which the true optic flow is known. Three frames from

Figure 8. Processing of independently moving objects (IMOs). (A–C) Image sequence
and (D–F) residual errors for frames 1, 15 and 30 of a complex motion sequence taken

from McCane et al. (1998). The residual error can be used to extract the different IMOs
in this sequence.
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the sequence are shown in the top row of Figure 8. To account for the
errors induced by optical flow algorithms, Gaussian noise vectors with a
standard deviation of 10% of the average flow vector size were added to
these flow fields. Both scene structure and motion patterns are com-
plicated in this sequence. The observer motion consists of a combination
of translation and rotation. There are two IMOs present, the car and the
satellite, and they too undergo complex combinations of translation and
rotation, which differ from the observer’s. The segmentation results are
shown in the bottom row of Figure 8. A lighter colour means a larger
residual errors or a larger discrepancy between the flow vector and the
model parameters. It is clear that the IMOs pop out quite strongly while
the flow field generated by the scene structure is ignored.

3.3. Summary of the employed multi-modal image analysis steps

In the previous sections, we have described how to combine different
scene analysis steps into an integrated image analysis system. The moti-
vation for this was that each individual step is still error-ridden such that
only a combination will yield reliable results. Specifically, we have shown
that collinear line segments can be better trusted when not only the ori-
entation of the lines match but also other features like colour or their
associated optic flow vectors. The same is true for stereo pairs. Once such
collinear lines are found, stereo analysis can then be further improved by
relying on line-matches instead of point matches. Rigid body motion can
be used to predict the development of the scene (more specifically of the
found stereo-matches) and optic flow analysis can be used to extract
heading information and to find all independently moving objects.

4. Covert active vision – Task dependent image processing

In Section 1, we have argued that active vision should be ‘‘task
dependent’’. For example, the centre of interest should be different when
performing a heading task (centre of interest focused on the heading
direction) as compared to an obstacle avoidance task where the centre
of interest should be always on the nearest obstacle. Very little is known
about how the brain would implement such mechanisms, but we are
able to provide the first basic results and concepts for a computer vision
system. Here we rely mainly on a task-dependent dynamic remapping of
the visual information: Our system is designed such that the magnifi-
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cation of the image changes relative to the centre of interest. This part of
the complete image analysis system is still not fully integrated with the
rest but Figure 9 shows the basic principle for a task.

In this example, the task is to spot an approaching object (a car) in a
rear view mirror image. Obviously the image of a car is small when it is
far away, while it becomes bigger close by. This example is motivated by
the demand for a driver assistant system which eliminates the blind-
angle problem when a human monitors his/her rear view mirror while
driving. Thus, it is important to spot an approaching car relatively early
and to be able to track it in a reliable way until it is getting dangerously
close (when a warning signal should be elicited). Part A of Figure 9
shows two original images, part B the remapped ones.

For other tasks, different mapping functions are possible. For
example, the extracted heading information (see Section 3.2 above) can
be used to magnify the image most at the focus of the heading (data not
shown).

Camera systems particularly in industrial or outdoor (e.g. while
driving) environments are preferably mounted in a rigid way and fixa-
tion movements are too demanding with respect to the mechanical
robustness of such systems. As described in Section 2.1, our visual
system performs magnification at the fovea which is usually aligned with
the centre of interest by means of fixational eye-movements. However,
because of the reasons given above such a foveation strategy cannot
usually be applied in technical systems. The task-dependent remapping
suggested here can solve this problem. Without having to move the
cameras, the magnification will be highest at the most relevant image
locations.

Figure 9. Task dependent image remapping. (A) Original image from a rear view
mirror. (B) Remapped image. Regardless of distance the size of the car in the image is
always roughly the same, which makes detection much easier.
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5. Conclusions

The goal of this article was twofold: (1) To summarise the multiple
processing strategies employed by the vertebrate visual system as far as
they are known to date and (2) to demonstrate that it is possible to
adapt some of these strategies to a computer vision system. The results
shown in the second part of this paper have demonstrated that multi-
modal image processing has the potential to improve scene analysis to a
large degree. In particular, one must realize that it does not make sense
to try to create a carbon-copy of the existing natural visual systems.
Instead, it is necessary to arrive at abstractions which are better suited
for implementation in a technical system. It is, however, obvious that
there is still a large amount of work to be done until such systems will be
robust and fast enough for any real-time application.
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Notes

1 This effect could be the basis of the so-called ‘‘waterfall’’ motion after-effect (Mather
and Verstraten, 1998): i.e. when concentrating for some time on a wide motion field
with constant velocity and direction (like falling water in a waterfall) the observer will
perceive motion in the opposite direction as soon as he looks away. An imbalance

between the spontaneous firing of the adapted downward selective cells, versus the
non-adapted upward selective cells could be the source of this percept.
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