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Abstract

Intrinsic dimensionality is a concept introduced by statistics and later used in image
processing to measure the dimensionality of a data set. In this paper, we introduce
a continuous representation of the intrinsic dimension of an image patch in terms
of its local spectrum or, equivalently, its gradient field. By making use of a cone
structure and barycentric co-ordinates, we can associate three confidences to the
three different ideal cases of intrinsic dimensions corresponding to homogeneous
image patches, edge-like structures and junctions. The main novelty of our approach
is the representation of confidences as prior probabilities which can be used within
a probabilistic framework. To show the potential of our continuous representation,
we highlight applications in various contexts such as image structure classification,
feature detection and localisation, visual scene statistics and optic flow evaluation.
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1 Introduction

In this paper, we propose a continuous representation of intrinsic dimension-
ality for the purpose of image processing and demonstrate its usefulness by
briefly describing the results of a number of applications of our representa-
tion in different fields of computer vision. First formulations of our represen-
tation of intrinsic dimensionality has been published in the two conference
papers [12, 27]. Extended descriptions of the applications of these have been
published at conferences [11,24], a journal [23] or are under preparation. This
paper presents now for a first time a compact description of the continuous iD
representation which (although based on ideas formulated in [12,27]) has now
matured by (1) its use in a number of contexts which underline the relevance
of our representations, (2) a proper theoretical derivation of the triangular and
continuous structure of the intrinsic dimensionality, (3) by new theoretical in-
vestigations leading to an appropriate formalism to deal with image noise, and
(4) a thorough comparison with and embedding in the existing literature.

The main novelty of our approach is the representation of continuous confi-
dences in a compact interval by means of an adaptive soft-threshold function,
such that all three cases add up to one. Hence, the intrinsic dimensionality can
be used as a prior in a Bayesian framework of processing, where the subsequent
processing steps evaluate the data in terms of conditional probabilities given a
particular intrinsic dimensionality. This is also the main difference to classical
work on edge and corner detection, see [20, 15, 3, 39, 33, 25] for a selection of
(mostly tensor-based) methods, where a hard classification into edge, corner,
or no structure is made.

1.1 The Intrinsic Dimensionality of Images in the Literature

The intrinsic dimensionality (iD) is a well known concept from statistics which
can be defined as follows (from [5], p. 314):

a data set in d dimensions is said to have an intrinsic dimensionality equal
to d′ if the data lies entirely within a d′-dimensional subspace.

The term itself goes back to the late sixties [42]. It has been used in the context
of statistical data analysis, see e.g. [18]. More recent work from the field of
machine learning, more concretely manifold learning, often defines the intrin-
sic dimension as the dimension of the underlying manifold. In [32] statistical
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methods are used to estimate the intrinsic dimension of manifolds embedded
in high-dimensional spaces and the approach is related to PCA and previous
local methods for dimensionality reduction, e.g. [7]. In [9], a differential geome-
try setting is used to estimate the intrinsic dimensionality of high-dimensional
spaces using entropic graphs. Other work relating images and intrinsic dimen-
sionality often consider the manifold of images or image patches [40,31] rather
than the intrinsic dimensionality within a single image. The latter approach to
intrinsic dimensionality of images was introduced by Zetzsche and Barth [44].
In this paper, intrinsic dimensionality was obtained by applying the defini-
tion from [5] to the spectrum of an image patch, i.e., the Fourier transform
of a neighborhood. The three possible intrinsic dimensionalities in images are
defined according to their local spectrum [26] (see also Fig. 1(a)):

spectrum
local

0

1

2

iD

(a) (b)

Fig. 1. (a) On the definition of intrinsic dimensionality. In the image on the left,
three neighborhoods with different intrinsic dimensionalities are indicated. The
other three images show the local spectra of these neighborhoods. (b) Different
image structures covering homogeneous patches, edges, junctions and textures and
their position in the iD triangle.

i0D It is concentrated in the origin, i.e., the neighborhood is constant.
i1D It is concentrated in a line through the origin, i.e., the neighborhood is

varying in one direction. These signals are also called simple signals [17].
i2D It is neither concentrated in the origin, nor in a line.

Typical examples for i1D neighborhoods are edges, lines, and sinusoids, whereas
corners, junctions, line ends, and spots are instances of i2D neighborhoods.
This is also related to the approach described in [40], where the authors con-
sider two subspaces of the manifold spanned by local image patches (20x20):
the explicit manifold, generated by a basis of iconic image primitives as edges,
ridges, and junctions, and the implicit manifold, represented by a set of fea-
tures and typically containing textures.
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A similar approach to the manifold of image patches, albeit at smaller size
(3x3), has been followed in [31]. Here, the authors transform the DC-free,
normalized patch (a 7D vector) to a vector in the 7-sphere S7 using a DCT-
based technique. The 7-sphere is then tessellated into a number of Voronoi
cells and the cells with the highest probability establish a kind of sparse coding
base for natural images. Both methods [40,31] consider the manifold of image
patches.

In contrast to that, we define the intrinsic dimensionality within an image
as the dimension of the local spectrum or, equivalently, the manifold of the
gradient field. Furthermore, in our approach we do not restrict the intrinsic
dimensionality to discrete choices, i.e. integer numbers, but allow a contin-
uous transitions similar to the fractal or capacity dimension. The space of
dimensionality itself is not just a real number, as it is equipped with a 2D
topology.

There are many possible ways to estimate the intrinsic dimensionality of an
image. One possibility is to average the outer product of gradients as it is
done for the structure tensor [4, 15]. The structure tensor has by definition
two non-negative eigenvalues. The two eigenvalues span one quadrant in 2D
space. Rotating this quadrant around its diagonal results in a cone-shaped 3D
subspace. Another method combines the local magnitude with a statistical
measure of local orientation variance as been used in a precursor of this paper
(see [27]).

1.2 The Need for an Extended Definition of the Intrinsic Dimensionality

The main use of the intrinsic dimensionality lies in the adaptive control of
other, mostly higher level image processing or computer vision methods. Con-
sider for instance motion estimation. Due to the aperture problem, only the
normal flow vector can be estimated in i1D regions. In i0D regions, no estima-
tion is possible, and in i2D regions, most estimation methods will fail because
they apply a model which assumes i1D structures (for a detailed analysis see
section 4.4 and [23]). Whereas some methods can make use of the covariance
matrix of the measurements to adapt to the intrinsic dimensionality [34], some
measurement problems require totally different methods for different dimen-
sionalities, and measurements for different intrinsic dimensionalities have to
be computed with different algorithms (see, e.g., [2]).

Besides motion estimation, there are further image processing and computer
vision tasks where either the quality of the result or the underlying model
depend on the iD of the data. For instance, in model-fitting, one would like
to choose a model based on those dimensions where the image data is non-
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trivial (e.g. fitting lines or planes in 3D); in 3D correspondence search, one
would like to reduce the number of candidates by the iD (see for example
[28]); and for i2D structures, a different post processing needs to be performed
to detect the position of a feature than for i1D structures (see section 4.1).
Furthermore, the statistics of underlying depth structures differs significantly
with the intrinsic dimensionality (see section 4.3), giving further indication for
the need of adaptive higher level processing schemes depending on the iD.

When it comes to measuring the iD, one notices that there are no or only
very few ’pure’ i0D, i1D, or i2D signals in natural images. Furthermore, as
soon as we take noise into account, the mathematically strict definition above
becomes useless. Noise is i2D, and most signals contain noise. Hence, in general
image neighborhoods are i2D. But how to distinguish between noise and i2D
image structures? Estimating the noise level is possible (e.g. [14]), but the
transition between noise and i2D image structures remains fuzzy. Apparently,
the definition of iD in terms of discrete states is unsuitable. We therefore
propose a continuous definition of iD in terms of a bounded iD cone which can
be mapped canonically to a triangle. Fig. 1(b) shows different image structures
being mapped to different areas in the triangle in which the ’pure’ cases of
homogeneous patches and edges are mapped to the left corner and upper right
corner respectively while non-pure cases become mapped to the inner part of
the triangle. This triangle representation will then allow for the definition of
3 confidences expressing the similarity to each of the ’pure’ i0D, i1D and i2D
structures.

Our continuous understanding of intrinsic dimensionality allows for a flexi-
bility in higher level processing. For example, instead of deciding for one di-
mensionality and selecting the further processing based on this decision, it is
possible to combine all three cases based on statistical methods (see, e.g., [41]).
This strategy avoids instabilities caused by the early decision about the iD.
Furthermore, the confidences for the different intrinsic dimensionalities can be
used as weights in post processing schemes (see section 4.1).

To propose a more appropriate model of iD than the discrete one is the main
purpose of this paper. This is essentially done in Sect. 2. In Sect. 3, we consider
more practical aspects like the parameterization, the soft-thresholding, and
the estimation of intrinsic dimensionality. In Sect. 4, we briefly describe some
applications of the continuous understanding of intrinsic dimensionality. We
conclude the paper with an outlook in Sect. 5.
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i0D i2D i1D i0D

Fig. 2. Representing the continuous intrinsic dimensionality in a 1D periodic space
for the example of different Gaussian functions. Upper row: spatial domain. Bottom
row: frequency domain.

2 Modelling the Intrinsic Dimensionality

In this section, we elaborate our new modelling of intrinsic dimensionality by
three observations, each of them leading to new aspects of the model. For these
observations, we consider 2D Gaussian functions to illustrate different cases
of intrinsic dimensionality. The family of 2D Gaussian functions contains all
three cases of iD (impulse, impulse-line, and constant signal) and continuous
variations between these three cases. Although we solely use this single signal
family for illustrating the iD, one should notice that all local signals map
somewhere in our representation and that there are infinitely many other
signals of the same iD. We used Gaussian functions for illustration purposes,
since this family represents all possible 2D signals concerning the iD, i.e.,
any 2D signal corresponds to a certain Gaussian function w.r.t. the intrinsic
dimensionality.

2.1 The Intrinsic Dimensionality is Non-Discrete

The i0D Gaussian function has infinite variance, i.e., it is a constant function.
The i1D Gaussian function has infinite variance in one orientation and zero
variance in the perpendicular orientation, i.e., it is an impulse line. The i2D
Gaussian function has zero variance, i.e., it is an impulse.

Apparently, there exist a continuous range of Gaussian functions between a
constant function and an impulse line, between the impulse line and the im-
pulse, and the impulse and the constant function. Therefore, the intrinsic
dimensionality should not be defined as discrete states, but as a continuous
space. In Fig. 2, a periodic 1D space is used to represent the intrinsic dimen-
sionality, including the three discrete states from the classical model.

2.2 The Space of iD Has More Than One Dimension

The Gaussian functions in Fig. 2 are either 1D Gaussian functions projected
into two dimensions, 1D Gaussian functions on an impulse line, or 2D isotropic
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Fig. 3. (a) Representing the intrinsic dimensionality as points in a 2D space of trian-
gular shape for the example of different Gaussian functions. The x-coordinate corre-
sponds to some monotonic function of the inverse radial variance. The y-coordinate
corresponds to some monotonic function of the anisotropy. (b) The cone model
for the space of intrinsic dimensionality illustrated with the example of different
Gaussian functions.

Gaussian functions. The anisotropic, non-degenerated 2D Gaussian functions,
however, are not yet contained in the model. The latter do not lie on the
periodic 1D space from Fig. 2, but in between the cases on the periodic space.
This implies that the space of iD cannot be one-dimensional as implicitly
expressed in the discrete counting i0D, i1D and i2D. Anisotropic Gaussian
functions (with fixed orientation) form a finite 2D continuous space with three
vertices. Hence, the space of intrinsic dimensionality with fixed orientation has
the shape of a triangle, see Fig. 3(a).
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The contour of the triangle corresponds to the periodic 1D space introduced
further above. The three corners correspond to the three discrete states in
the classical model. The triangular structure allows for changing continuously
(and linearly) from any particular case of intrinsic dimensionality to any other
case.

2.3 The Space of iD is a Cone

A constant or isotropic function does not include any orientation information.
Anisotropic Gaussian functions, however, include 2D orientation information.
Therefore, we can distinguish different triangles like the one from Fig. 3(a)
by different orientations of the reference coordinate system. The orientations
cover again a continuous range. All triangles have a common edge which lies
between the i0D case and the i2D case, which are both unoriented. The space
of iD is hence obtained by rotating the iD triangle around the i0D-i2D edge.
The resulting object is a cone in 3D space, see Fig. 3(b).

If the triangle is not rectangular, the resulting object is a double-cone. How-
ever, double cones and cones fall into the same equivalence class under topology-
preserving mappings. The only formal difference lies in a strictly monotonic
change of parameterization. Hence, without loss of generality, we consider a
simple cone in the following.

In the cone model, the ideal i0D case and the ideal i2D case are both repre-
sented by points, i.e., subspaces of dimension zero, whereas the ideal i1D case
is represented by a circle, i.e., a subspace of dimension one. The background
of the different dimensions is already given by the definition of iD in terms of
subspace dimensions. There exist respectively one zero-dimensional and one
two-dimensional subspace of 2D space. The 1D subspaces, however, form a 1D
family of subspaces, parametrized by the orientation of the subspace.

Although both are represented by points, there is a fundamental difference
between the ideal i0D case and the ideal i2D case: whereas the former covers
only the constant signals, the latter includes a huge variety of different sig-
nals. Correspondingly, the non-ideal i0D signals are spread in a much smaller
volume than the non-ideal i2D signals. This fact is well covered by the model,
where the volume around the i0D vertex is much smaller than the volume
around the i2D vertex
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3 Practical Aspects

Knowing the topological structure of iD space is a first step to make use of it.
However, the space has to be parametrized and these parameters have to be
estimated in order to apply the model in practice. These two issues are the
subject of this section.

3.1 Barycentric Coordinates

As already indicated in Fig. 3(a) and 3(b), we choose, in a first step, the co-
ordinate ranges to lie between 0 and 1. Within our triangular representation,
a suitable parameterization for the formalization of the confidences that indi-
cate the iD of the local signal are barycentric coordinates [8]. In a second step,
the second coordinate becomes a complex number in order to represent every
point in the cone.

We set the vertices to (x, y) = (0, 0) for the i0D case, to (x, y) = (1, 1) for
the i1D case, and to (x, y) = (1, 0) for the i2D case. Any point in the triangle
is represented by its three barycentric coordinates (ci0D, ci1D, ci2D) where each
coordinate can be interpreted as the likelihood for the corresponding iD case,
because each cikD for k = 0, 1, 2 is in the range of [0, 1] and the confidences sum
up to one:

∑2
k=0 cikD = 1. The barycentric coordinates correspond to the areas

of the opposite triangles (see Fig. 4, left) and are obtained by the formulas:

ci0D = 1− x, ci1D = y, ci2D = x− y . (1)

For a point (x, y) in the triangle, the second step results in the coordinate y
multiplied by the complex double angle representation [17] of the local orien-
tation:

z = y exp(i2θ) , (2)
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Fig. 4. Barycentric coordinates in a triangle (left) and in a cone (right).
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where θ represents the local orientation. This modification leads to a param-
eterization of the iD cone, see Fig. 4, right.

If we want to extract the barycentric coordinates of a point in the iD triangle
from the coordinates in the iD cone, we must project the 3D point onto the
2D slice which has the same orientation 2θ, see the white triangle in Fig. 4.
This means we set y = |z| ∈ [0, x] in (1).

3.2 Soft Thresholding

The iD cone and the space of structure tensors are both cone-shaped, but
whereas the former is bounded, the latter is infinite, and can therefore not
be used for a parameterization with barycentric coordinates. Still, we can use
the structure tensor to estimate the iD cone by splitting the former into a
magnitude part and a normalized tensor, mapping the magnitude to [0, 1] by
a monotonic function (soft threshold function), and multiplying the modified
magnitude and the normalized tensor.

The soft threshold function is a non-linear mapping g : R+ → [0, 1] : m 7→
g(m), similar to the activation function known from neural networks. We de-
rive the soft threshold function using the conditional probabilities for the
classes ’noise’ Cnoise and ’signal structure’ Cstruct, such that the soft thresh-
old is the posteriori probability of membership of class ’signal structure’ [5],
Sect. 3.1.2:

g(m) = P (Cstruct|m)

=
p(m|Cstruct)P (Cstruct)

p(m|Cstruct)P (Cstruct) + p(m|Cnoise)P (Cnoise)

=

(
1 +

p(m|Cnoise)P (Cnoise)

p(m|Cstruct)P (Cstruct)

)−1

. (3)

What remains is to estimate the likelihoods for m and the class priors from im-
age data. This is done by adjusting the parameters of a mixture of exponential
distributions to the squared gradient magnitude.

In 2D the squared magnitude of the gradient response to noise is χ2
2 distributed

if we assume additive Gaussian noise [14]. As a result, the likelihood for Cnoise

is modelled according to:

p(m|Cnoise) =
1

µnoise

exp

(
− m

µnoise

)
. (4)

For natural images, the distribution of (squared) gradient magnitudes is typi-
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cally described as long-tailed in the literature [37] and sometimes modeled as
a Weibull distribution [16] 1 . The Weibull distribution with γ = 1 is the same
exponential distribution (4) as the χ2

2 distribution. Hence, we approximate the
squared gradient magnitude distribution for noisy images by a mixture of two
exponential distributions.

The mixture parameters are obtained in a similar way as for a Gaussian mix-
ture, using a variant of the EM algorithm, see e.g. [5], Sect. 2.6. The parameters
are obtained by maximizing the likelihood or, equivalently, the log-likelihood:

(P ∗
1 , P ∗

2 , µ∗1, µ
∗
2) = arg max

P1,P2,µ1,µ2

N∑
n=1

log(pmixt(mn)), (5)

pmixt(m) =
P1

µ1

exp

(
−m

µ1

)
+

P2

µ2

exp

(
−m

µ2

)
, (6)

where mn, n = 1 . . . N are samples of the squared gradient magnitude drawn
from image data and P1, P2 > 0 sum to one: P1 + P2 = 1. Without loss of
generality we assume that

P (Cnoise) = P1, (7)

P (Cstruct) = P2 = 1− P1, (8)

µnoise = µ1, (9)

µstruct = µ2, (10)

which is achieved in practice by initially selecting P1 > P2. With a similar
derivation as in [5], Sect. 2.6, the equations which need to be iterated in the
EM algorithm read

P new
j =

1

N

N∑
n=1

P old(j|mn), (11)

µnew
j =

∑N
n=1 P old(j|mn)mn∑N

n=1 P old(j|mn)
, (12)

where P old(j|mn) = pold(mn|Cj)P
old
j /pold

mixt(mn). The algorithm typically con-
verges within 10-20 iterations.

Plugging the obtained mixture into the soft threshold function (3) results in:

g(m) =

(
1 +

P1µ2

P2µ1

exp

(
m

(
1

µ2

− 1

µ1

)))−1

, (13)

1 Note that the squared magnitude is addressed on p. 335 in this reference.
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where the exponential is of negative kind (µnoise = µ1 < µstruct = µ2), i.e. we
obtain a logarithmic sigmoid function for the soft-threshold, see [5], Sect. 3.1.3.
The computation of the soft threshold is illustrated in Fig. 5.
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Fig. 5. The three plots show the empirical distribution of the squared gradient
magnitude for a natural image (dots), the approximation by a mixture of two χ2

2

distributions (black), and the final soft thresholding function (grey).

3.3 Estimation of iD

Due to the consisting embedding of the iD space, it is not necessary to estimate
the structure tensor to begin with. Instead, we can directly map the gradients
to the surface of the iD cone and do the averaging in the iD cone instead of the
tensor. Instead of the gradient, we can use any other method for estimating
the edge-ness or line-ness of a structure. We do not need an estimator for
i2D structures, since the averaging in the iD-cone model will result in such
an estimate. The convexity of the model assures that we remain always inside
the cone.

Consider for instance two measurements with perpendicular orientations but
the same, large magnitude of the gradient. Averaging them will lead to a
vanishing z-coordinate, such that we get a result close to (1, 0), i.e., close to
the i2D vertex. This is appropriate, since two perpendicular and large gradients
in the same neighborhood imply some kind of corner or junction.

When estimating the local orientation in areas with multiple orientation, one
can either choose to combine the output of large, regularized linear filters,
e.g. Gabor filter outputs, or to apply non-linear smoothing of small filter out-
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Fig. 6. Barycentric coordinates for the image in Fig. 1(a), black means zero and
white means one. From left to right: ci0D, ci1D, ci2D and highest confidence marked
in gray, white and black for i0D, i1D and i2D, respectively.

puts, e.g. centralized differences. For a constant scale of the effective overall
operator, it has been shown that as much regularization as possible should be
moved to the non-linear smoothing, i.e. the linear filter should be as small as
possible [22], Sect. 3.4, which has also been confirmed in [10]. Hence, we use
Scharr filters [43] in what follows, since this is the smallest isotropic gradient
filter without displacement of the origin. Haar wavelets or 2-tap differences are
smaller but lead to slightly larger errors repeating the experiment from [22].

For an image point u = (u1, u2), the proposed estimation method works as
follows:

(1) Image gradient: Extract (complex) gradient data f =
√

m(u) exp(iθ(u)),

m(u) being the squared magnitude and θ(u) the orientation at pixel u.
(2) Magnitude normalization and double angle representation: Convert the

gradient data to soft-thresholded double angle representation d(u) =
g(m(u)) exp(i2θ(u)), g(·) being the soft threshold function (13), i.e., re-
ferring to Sect. 3.1, we have x = y = g(m(u)).

(3) Cone representation: Set the cone coordinates c(u) = (c1, c2, c3) =
(|d|, Re{d}, Im{d})

(4) Averaging: Average the cone coordinates locally: c′(u) =
∑

i wic(i) where
i runs over the neighborhood of u, and wi is the two-dimensional Gaussian
filter with appropriate σ.

(5) Triangle representation: (x4(u), y4(u)) = (c′1,
√

(c′2)
2 + (c′3)

2)

(6) Normalization of y values: Since the cone is defined in polar coordinates
and we integrate over the angle, we have to multiply with the Jacobean
(the radius), i.e., (x̂(u), ŷ(u)) = (x4(u), y4(u)

2
/x4(u))).

(7) Barycentric coordinates: Extract barycentric coordinates from (x̂, ŷ) ac-
cording to (1).

The barycentric coordinates obtained from the described algorithm applied to
the image in Fig. 1(a) are given in Fig. 6. The robustness of the method is
illustrated by adding different amount of noise to the Lena image, see Fig. 7.
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Fig. 7. The Barycentric iD coordinates for different amounts of noise. From left to
right: noisy image, i0D, i1D, i2D, and density plot. From top to bottom: Peak signal
to noise ration (PSNR) 40dB, 37dB, 33dB, 30dB, and 27dB.
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4 Applications

The continuous understanding of intrinsic dimensionality and the arrange-
ment of image structures in a triangle (or cone) has been used in a number of
applications. Firstly, we have shown that certain classes of image structures
(homogeneous patches, edges, corners and textures) become reflected in dif-
ferent areas of the iD-triangle, and therefore, the triangular representation is
well suited to distinguish these structures (see section 4.1). Secondly, the ap-
proximate position of junctions can be characterized by the maximum of the
intrinsic two-dimensional confidences (see section 4.1 and [11]). We further im-
prove this positioning using a model-based approach based on our continuous
understanding of intrinsic dimensionality (see section 4.1). Thirdly, we have
made use of the triangular representation for an investigation of the relation
of image structures to the underlying depth structures (section 4.3 and [24]).
Finally, we have shown that the distribution of the quality of optic flow esti-
mation reflects the distribution of image structures within the iD triangle (see
section 4.4 and [23]).

4.1 Edges, Junctions and Textures

Fig. 1(b) shows the arrangement of certain sub-structures in the iD triangle
for at least ten samples of each sub-structure that were manually chosen. Some
image patches are displayed with a pointer to their position in the iD triangle.
The figure shows that different sub-structures cover different sub-areas in the
triangle: homogeneous image patches are at the i0D corner while edge–like
structures are organized along a stripe along the hypotenuse of the triangle.
We also see that the ’ideal’ homogeneous patch as well as the ideal edge are
mapped to the appropriate corners of the triangle 2 . Textures cover an area
with medium x and considerable y values. Finally, junctions show high x and
low y values. There is good distinguishability but also some overlap, especially
between junctions and textures.

The i2D confidences are natural indicators of junction structures (see Fig. 6-
right). However, it is known that the positioning of junctions by local energy
based operators without model knowledge is biased (see, e.g., [39]); for exam-
ple, corners tend to become positioned at the inner part (see Fig. 8). One way
to address this problem is to integrate model knowledge into the detection al-
gorithm (see, e.g., [15,39]). A corner can be understood as intersection of edges
and the point of intersection gives its position [36]. Our cone representation
allows us to integrate such knowledge in an efficient way: We have defined a

2 Note that the concept of an ’ideal’ junction has not been defined in a complete
sense in the literature.
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Fig. 8. From top to bottom: Location of the corners as found by i2D confidences
(top), and weighted voting scheme (bottom).

voting procedure that determines the positions of junctions at the intersection
of lines in the vicinity. Basically, each point in a local neighbourhood in com-
bination with the orientation computed at that pixel determines a line. The
intersections of these lines results in a new position estimate for the corner
(see Fig. 8). In our scheme, each of these lines acts as a weighted vote for the
true position of the corner. Weighting is done according to the i1D confidence
which expresses the likelihood that the signal represents an edge or a line:

ic(pc) =
∫

[ci1D(p)]2
[
1− d(lp,pc)

d(p,pc)

]
dp, (14)

where pc is the center of the window; lp is the line going through pixel p with
a slope defined according to the pixel orientation; d(lp,pc) is the distance
between lp and pc; and, d(p,pc) is the distance between p and pc. The ic()
function is similar to the R() function of [36] and S() function of [13], and it
can be interpreted as a specific case of the Hough transform [21].

4.2 Advantage of Using Continuous Measure

To show the advantage of using a continuous measure in a specific example, we
modified the ic() function in (14) so that it combines the votes only from pixels
whose i1D confidence is highest. The results, shown in Fig. 9, demonstrate
that using continuous measures produces better results, especially when the
junction is formed by noisy, texture-defined or low-contrast edges.
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(a) ic() with continuous i1D.

(b) ic() with discrete labeling.

Fig. 9. Using continuous measures (a) and discrete measures (b) for the intersection
consistency defined in (14). For noisy, texture-defined or low-contrast edges, using
continuous measures is advantageous.
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Fig. 10. [Figure to be printed in color] a) Colour image and b) the corresponding
range map measured by a laser range finder. c) Maxima of intrinsic dimensionality
confidences (brown: c0D is maximal. yellow: c1D is maximal. blue: c2D is maximal).
d) Extraction of different 3D structure (blue: continuous surfaces. green: orienta-
tion discontinuities. orange: depth discontinuities. brown: irregular depth discon-
tinuities). e-h) Conditional probabilities of the respective 3D structures given the
intrinsic dimension. e) continuous surfaces. f) depth discontinuities. g) irregular
depth discontinuities. h) orientation discontinuities. Note that the ranges of (e-h)
are not the same; we have not used the same scale in order to make the distributions
more visible.

4.3 The Relation of Image Structures to Depth

By making use of our continuous iD representation, we investigated how local
3D structure is reflected in local image structure [24]. Using a set of 20 colour
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images with known 3D ground truth 3 (see Fig. 10(a,b)), we extracted 4 classes
of 3D structures from the 3D ground truth: (1) Continuous surfaces (indicated
as blue in Fig. 10(d)) are areas in which there are no depth discontinuities,
and the underlying 3D structure does not vary or varies smoothly; (2) At
orientation discontinuities (indicated in green in Fig. 10(d)), there exist two
surfaces with rather different angle that meet in 3D without creating a depth
discontinuity; (3) At gap discontinuities (indicated in orange in Fig. 10(d)),
there exists significant depth discontinuities; and, finally (4), irregular gap
discontinuities (indicated in brown in Fig. 10(d)) are observed when there is
frequent change of depth (e.g., at trees or fences).

In Fig. 10(e-h), the empirical conditional probabilities for the respective 3D
structures given the intrinsic dimensionality are shown. Homogeneous image
structures reflect continuous surfaces. 4 Also, most textures and many edges
reflect continuous surfaces. In particular high contrast edges are caused by
orientation discontinuities (see Fig. 10(h)). High contrast structures (located
at the i1D-i2D side of the triangle) are to a high degree caused by gap discon-
tinuities.

4.4 Evaluation of Optic Flow Estimates

We also investigated the quality of optic flow estimation. It is known that
for certain image structures, there occur specific problems. For homogeneous
image patches, basically no reliable flow estimates can be obtained, while for
edges, we have to face the aperture problem. Using our continuous under-
standing of iD, we investigated these dependencies more closely in [23].

Fig. 11(b) shows a combined error measurement for optic flow estimation
using the Nagel algorithm [35] on a set of 11 sequences with known ground
truth (see Fig. 10(a,b)). The performance varies significantly with the intrinsic
dimensionality. There is rather bad performance on homogeneous image areas
and edges, and better performance for textures and junctions. The effect of
the aperture problem becomes visible when we look at the deviation of the
estimate from the true normal flow (11(c) which is very low at edges, and
hence can be used for reliable line–correspondence finding (see, e.g., [29]).

3 The 3D ground truth was recorded by a laser range finder. On average, the images
have a resolution of 1140x1000 pixels.
4 This was already stated (see, e.g., [19]) as ’no news is good news’ and has been
used in surface reconstruction/interpolation studies (see [6, 19]).
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Fig. 11. [Figure to be printed in color] a) Logarithm of the distribution of image
structures according to their intrinsic dimensionality. b) and c) Statistical evaluation
of Nagel’s optic–flow estimation algorithm. b) Mean error of optic flow expressed by
a combined measure evaluating angle and magnitude (also used in [1]) depending
on the intrinsic dimensionality. c) Mean difference to normal flow depending on the
intrinsic dimensionality.

5 Summary and Discussion

We introduced a new continuous representation for the intrinsic dimensionality
of local image structures that is based on a cone representation which can be
mapped in a straight forward manner to a triangle. We could demonstrate the
usefulness of this representation for the distinction of different signal structure
classes, for the junction detection and positioning problem, for the statistical
investigation of local image structures to underlying depth structures as well
as for the analysis of optic flow estimation algorithms.

The investigations described in this section make also the limits of local signal
processing explicit. For example, it is not possible to uniquely distinguish
junctions from other structures based on the information in a local image
patch only. There are continuous transitions between these structures, and
for this reason, final decisions should be postponed until later stages of the
processing. Local descriptors such as the intrinsic dimensionality confidences,
however, give good indications of the kind of local image structure and the
post-processing that should be applied to it. In this way, it can be used as
an initializer of processes taking also context information into account (see,
e.g., [30, 38]).
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[25] U. Köthe, Integrated edge and junction detection with the boundary tensor, in:
Proc. of 9th Intl. Conf. on Computer Vision, Nice, vol. 1, 2003.

[26] G. Krieger, C. Zetzsche, Nonlinear image operators for the evaluation of local
intrinsic dimensionality, IEEE Transactions on Image Processing 5 (6) (1996)
1026–1041.
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[34] M. Mühlich, R. Mester, Subspace methods and equilibration in computer vision,
in: Proc. 12th Scandinavian Conference on Image Analysis, 2001.

[35] H.-H. Nagel, W. Enkelmann, An investigation of smoothness constraints for
the estimation of displacement vector fields from image sequences, IEEE
Transactions on Pattern Analysis and Machine Intelligence 8 (1986) 565–593.

[36] L. Parida, D. Geiger, R. Hummel, Junctions: detection, classification
and reconstruction, IEEE Transactions on Pattern Analysis and Machine
Intelligence 20 (7) (1998) 687–698.

[37] J. Portilla, V. Strela, J. Wainwright, E. P. Simoncelli, Image denoising using
scale mixtures of Gaussians in the wavelet domain, IEEE Trans. Image
Processing 12 (11) (2003) 1338–1351.
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