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Local features such as phase, energy and orientation have been widely used in the
literature for multiple computer vision applications such as edge detection, texture
analysis, motion estimation, depth computation, etc. They can be computed using
wavelet image decomposing based on Quadrature filters tuned at different scales and
orientations. Although this represents a very powerful image analysis technique, its
feasibility for real-time domain applications is still beyond current computer capabilities
due to the high demand of computational resources. In this article, we present an
architecture developed for real-time processing of these features using reconfigurable
hardware. Although, to the best of our knowledge, previous implementations of Gabor
or steerable filters on chip already exist, none of them provides energy, phase, and
orientation information at the same time. We show how to implement quadrature filters
based on Gaussian derivatives. We develop a hardware friendly technique to interpolate
between a multi-oriented filter bank to compute features at their main orientation which
has not been used before. We finally describe the system resource requirements,
performance and some system illustrative results.

Keywords: real-time image processing; quadrature filters; local image phase; orientation
and energy; fixed point arithmetic

1. Introduction

In this contribution, we have focused on three basic image properties, phase, energy and
orientation, which provide significant cues in the process of image understanding. They
have been extensively used on computer vision (Krüger and Wörgötter 2002; Krüger and
Felsberg 2004) and, as we will see, they can be obtained from the same set of image
processing operations.

Local image orientation encodes the geometric information of the signal whereas the
phase can be used to differentiate between diverse image structures independently of their
orientation differences. Because of the inherent ambiguity of orientation (two possible
directions), we have used the double angle representation proposed by Granlund (1978).

Energy (or equivalently its square root, the magnitude) represents the information
about the local luminance and contrast and therefore, is a luminance-depending feature.
This is used in our system as a valuable parameter on the estimation of confidence
parameters for our features.
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Phase information, as is stated in the literature (Fleet and Jepson 1993), is more stable
against image changes on contrast, scale, or orientation than luminance based
information. It can be used to interpret the kind of contrast transition at its maximum
(Kovesi 1999). It has been applied to numerous applications, especially for motion (Fleet
1992; Gautama and Van Hulle 2002), and stereo processing (Fleet, Jepson and Jenkin
1991; Solari, Sabatini and Bisio 2001; Dı́az, Ros, Carrillo and Prieto 2007b).

The three image features are strongly interrelated. The estimation of the local phase
and the local energy is an important step in many signal and image processing tasks, but
this requires a second crucial task which is the estimation of the local orientation. In most
cases, energy and phase are computed using a set of filters with some predefined
orientation. Each complex filter is composed by an odd and an even component, where
one is the Hilbert transform of the other. As local phase and energy information are
intrinsically one-dimensional (1D) features, the preferred orientation is necessary for its
computation unless some spherical filter is used (see Felsberg and Sommer 2001).

If these features are not computed at their corresponding orientation, our estimation
will be suboptimal and will not reflect accurate values. This makes it necessary to properly
cover the orientation space in order to obtain accurate estimations for these features.
Furthermore, taking that under consideration, if the signal presented at an image position
is not 1D as it happens in corners, junctions, or textures, these features can be multi-valued
and then, complex analysis is required. In this contribution, we assume that we have 1D
image signals and we address the implementation of a real-time architecture for computing
these three features.

Previous works have been reported in the literature which implement real-time
Quadrature filter computations which is the first processing stage of our system and the
one which has the main processing power requirements. The real-time implementation of
the multioriented decomposition on standard processors is still a challenge due to the large
number of convolution operations required. Using Gabor filters, one 2D convolution for
each orientation is required and at least seven filters are required for the steerable filters
approach (for second order Gaussian derivatives). There are some preliminary works as
Bernardino and Santos-Victor (2005) for fast software computation that achieve 5 fps for
one orientation and multiscale analysis with an image resolution of 128 6 128 pixels on a
P4 2.66 GHz processor. Using Matlab software and speeding up the convolution
operations using the FFTW (Frigo and Johnson 2007), our source code runs at 1.2 fps of
images of resolution 512 6 512 pixels on a Intel Dual Core 6600, 2.4 GHz processor.
Even if a C/Cþþ implementation could significantly reduce the computation time, we are
still far away from the real-time requirements of 25 fps.

The high computational load has motivated the development of customised chips to
achieve the real-time. One important constraint of these implementations is that it uses
fixed arithmetic in the computations. Another limitation on the systems developed in the
literature is that only some features (or filter outputs) are provided for the systems.

For instance, Kubota and Alford (1997) present an interesting VLSI implementation
of steerable filters for orientation computation. Unfortunately, the chip does not produce
local phase information. Voß and Mertsching (2001) develop a Gabor filtering bank using
reconfigurable hardware with 12 different orientations and able to compute 12 fps with
images of resolution 256 6 256 pixels. They compare floating point arithmetic and fixed
point arithmetic, concluding that, with proper intermediate data scaling, final system
accuracy could be almost indiscernible between the fixed and the floating point versions.
This result confirms our analysis presented in Dı́az, Ros, Mota and Carrillo (2007c) and
summarised in Section 3.
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The system developed by Bouganis, Cheung, Ng and Bharath (2004) uses steerable
filters to produce image wavelet decomposition. The hardware implementation works on
one image pyramid and produces the Quadrature filter outputs at four orientations. Bit-
width analysis is also presented. This implementation is quite similar to that of our first
processing stage (convolution operations and linear filter combinations) but we have gone
beyond that and combined this information into the chip. This reduces the communication
bandwidth requirements.

In Darabiha, Maclean and Rose (2006), a local phase-based stereo algorithm is
implemented on reconfigurable hardware. This system is a good example of application of
the phase information to solve the image correspondence problem. Though input stages
are also based on steerable filters, they only compute two different orientations and phase
is not provided to the local path orientation but computed at two predefined orientations.

Finally, Cheung, Leong, Tsang and Shi (2006) present an FPGA implementation for
Gabor filter computation using CNNs. The CNN template can be reprogrammed, but
only one orientation is computed each time. Furthermore, no orientation, energy, or phase
is directly provided by the chip because only binary cell output is provided. This makes the
system inoperative for target applications such as stereo or motion image estimation, local
contrast measure, or local image orientation estimation.

Our contribution contains relevant differences with the previous works. First of all, to
the best of our knowledge, this is the first real-time system able to produce at the same time
the energy, phase and orientation. Previous contributions are only able to produce one or
two of the previous features, but as shown in Sabatini et al. (2007), a complete harmonic
representation is required to properly analyse the input images. We have gone beyond the
preliminary stages which are mainly convolution operations and have taken advantage of
the shared operations required for these three features to reduce the hardware resources
and improve features accuracy. Furthermore, we properly combine the different modalities
to compute phase at their corresponding orientation using the Haglund’s (1992) technique.
This provides the proper local phase value instead of producing estimations at
approximated orientations, which is usually done by most of the authors (Voß and
Mertsching 2001; Cheung et al. 2006; Darabiha et al. 2006). From the hardware
architecture point of view, a highly parallel design technique has been used to exploit the
inherent FPGAs parallelism capabilities to achieve a computing performance of more than
56 Mpps (megapixels per second). Our architecture is able to provide one feature
estimation per clock cycle which seems to not be the case for the four referenced
architectures (not clear from their papers) and overcame the computing performance of
the previous systems of the literature.

This article is structured as follows. In section 2, we summarise the required computer
vision theory. In section 3, we analyse the degradation due to fixed-point arithmetic
utilisation and section 4 describes the superscalar and long-datapath pipelined architecture
developed. Finally, section 5 describes our main conclusions and future work.

2. Pixel-wise image processing model for estimation of orientation, energy and phase

Local image features can be extracted using Quadrature filters. A Quadrature filter is a
complex filter that allows decomposing each output as phase and magnitude. If we note
h(x,k) for a complex filter tuned to a spatial frequency f0 along the x axis then:

hðx; f0Þ ¼ cðx; f0Þ þ jsðx; f0Þ ð1Þ

International Journal of Electronics 745
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where c and s, respectively represent the odd and even components of the filters, fulfilling
the condition that the odd and even filters are Hilbert transforms of each other. The
convolution with the image I(x) is expressed in Equation (2):

I� h ¼
Z

IðxÞhðx� x; k0Þdx ¼ CðxÞ þ jSðxÞ ¼ rðxÞe jfðxÞ ð2Þ

where r(x) denotes its amplitude (that we will also note as magnitude, and energy when we
refer to its square value), f(x) is the phase and the components C(x) and S(x) represent
respectively the responses of the odd and even filters. Quadrature filters are usually
computed using bandpass filters such as Gabor or Gaussian derivatives which analyse the
image at discrete orientations. Furthermore, they fit well on FPGA devices because they
are based on convolutions.

Phase information is intrinsically 1D and therefore, only can be computed for image
areas which can be locally approximated as lines or edges. This leads to the necessity of
local estimation of the main orientation. An extensive analysis of the available theories can
be found in (Dı́az 2006a). As a conclusion, orientation needs to be computed to properly
estimate phase. This inherent relation between features motivates the development of a
specific purpose architecture to compute the three of them into the same system.

2.1. Quadrature filter computation using Gaussian derivatives

Widely used in the literature, (Freeman and Adelson 1991; Mota, Ros, Dı́az, Ortigosa and
Prieto 2005), Gaussian derivatives allow the computation of any particular orientation
based on a basic set of separable kernels. This property is usually referenced as stereability
(Freeman and Adelson 1991). The kernels have to be properly weighted to get the desired
oriented kernel. Quadrature filters are computed using the Hilbert transform of the
Gaussian derivative as described in (Freeman and Adelson 1991). A key factor for its
design is the derivative order, because the tuning frequency and bandwidth depend on this
parameter. Figure 1 illustrates the effect of using different derivative orders and its relation
with the Gabor filters.

Figure 1. Comparison of Gabor (green), Gaussian derivatives (blue), and cosine (red) functions
tuned to the same peak frequency. (a) Gaussian derivative of order 2 is close to Gabor filters but the
difference is not negligible. (b) Gaussian derivative of order 4. This time, the similarity is higher and
the filter is very close to the Gabor approach. Note that the number of waves increases according to
the Gaussian derivative order, corresponding to higher orientation selectivity. These images are
available in colour online.
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Concerning the constraints of real-time embedded systems we will focus on second
order Gaussian derivatives because they represent a good trade-off between accuracy and
resource consumption. In our architecture, we use nine tap kernels with peak frequency of
f0 ¼ 0.21 pixels71 and bandwidth b ¼ 0.1 pixel � s71 as utilised on Freeman and Adelson
(1991). This derivative order is able to provide high accuracy at a reasonable system cost.

Kernel equations of the Second order Gaussian derivatives Gxx, Gxy and Gyy and their
Hilbert transforms Hxx, Hxy, Hyx and Hyy are presented on Equations (3) and (4). Note
that one of the advantages of Gaussian derivatives (compared with Gabor filters) is that
they are computed from a set of 2D separable convolutions, which significantly reduces
the required resources. The Gaussian derivative equations are:

Gxx ¼ 0:9213 � 2x2 � 1
� �

� e� x2þy2ð Þ ð3aÞ

Gxy ¼ 1:843 � x � y � 2x2 � 1
� �

� e� x2þy2ð Þ ð3bÞ

Gxx ¼ 0:9213 � 2y2 � 1
� �

� e� x2þy2ð Þ ð3cÞ

and for their Hilbert Transform:

Hxx ¼ 0:9780 � �2:254xþ x3
� �

� e� x2þy2ð Þ ð4aÞ

Hxy ¼ 0:9780 � �0:7515þ x2
� �

� yð Þ � e� x2þy2ð Þ ð4bÞ

Hyx ¼ 0:9780 � �0:7515þ y2
� �

� xð Þ � e� x2þy2ð Þ ð4cÞ

Hyy ¼ 0:9780 � �2:254yþ y3
� �

� e� x2þy2ð Þ ð4dÞ

After convolving the image with these filters, we steer them to estimate the Quadrature
filters at some predefined orientations. In our system, we compute the Quadrature filter
output at eight different orientations which properly sample the orientation space (further
details in Dı́az 2006a). The filters steering is implemented following Equation (5) where y
stands for the orientation.

cy ¼ cos2ðyÞGxx � cos ðyÞsin ðyÞGxy þ sin2ðyÞGyy

sy ¼ cos3ðyÞHxx � 3cos2ðyÞsin ðyÞHxy � 3cos ðyÞsin2ðyÞHyx þ sin3ðyÞHyy ð5Þ

The computation stages described in this section can be summarised as follows:

(1) Second order Gaussian derivatives Gxx, Gxy and Gyy and their Hilbert transforms
Hxx, Hxy, Hyx and Hyy computation, using separable convolutions.

(2) Linear filter steering at eight orientations using Equation (5).

After these two stages, we have eight complex numbers for each pixel corresponding to
the different orientations and even-odd filter outputs pairs.

2.2. Hardware friendly features interpolation from a set of oriented filters

If we consider eight oriented filters, it is likely that the local orientation of some features
does not fit this discrete number of orientations. Under this circumstance, we need to
interpolate the feature values computed from this set of outputs.

International Journal of Electronics 747
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In this article, we will focus in the tensor-based Haglund’s approach (Haglund 1992).
Based on a local tensor that projects the different orientations, information can be
computed as described in Equations (6)–(8). In these equations, E stands for energy
(magnitude square), j for the complex unit and i for the orientation.

Elocal ¼
P

i Ei

N
ð6Þ

ylocal ¼
1

2
arg

X
i

4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i þ s2i

q
exp j2yif g

 !
ð7Þ

flocal ¼ a tan ðs=cÞ
c ¼

X
i

ci cos
2 yi � ylocalð Þ s ¼

X
i

si � sinðcos yi � ylocalð ÞÞ � cos 2 yi � ylocalð Þ ð8Þ

There are three main drawbacks or problems to overcome in order to arrive at an
affordable high performance hardware system:

(1) Magnitude/energy for orientation computation. Equation (7) requires a square root
operation which is expensive to compute on reconfigurable hardware.

(2) Image features dependencies. Equation (7) uses the local energy extracted at each
orientation, also computed on Equation (7). Equation (8) uses the orientation
computed at Equation (7). This data dependency enlarges the pipeline datapaths
and is very demanding in terms of resources.

(3) Arctan function computation. It can be computed using Look-Up-Tables LUT based
methods or the CORDIC approach (Volder 1959).

We have carried out several modifications to overcome these problems. Problem I is
solved by changing from magnitude to energy in Equation (7). We have also measured the
difference between the original model and the modified version, considering this
modification as a noisy signal. The SNR achieved using this modification is 57.4 dB,
which is large enough to ensure a very high quality results. According to the previous
discussion, the modified Equation (7) is presented in Equation (9).

ylocal ¼
1

2
arg

X
i

4

3
c2i þ s2i
� �

exp j2yif g
 !

ð9Þ

Problem II is related with the image feature dependencies. This point needs to take into
consideration two aspects. First, local energy is used for mean energy computation as well
as for orientation estimation. Because local energy only requires odd and even filters
squaring and addition, this is not a critical dependency, because it can be solved just using
a delay buffer. Second, the dependency between orientation and phase estimator circuits is
more relevant. Orientation estimation involves the arctan function which usually requires
a deep pipeline for high performance. The 8 odd and 8 even filter outputs require a
buffering technique to make these data available when orientation is ready. Furthermore,
the filter output should be accessible in parallel to maximise the circuits performance,
which requires a large number of memory resources or registers. This requires a large
amount of resources and should be avoided. Following the indications of Haglund (1992),
Equation (8) can be simplified as described on Equation (10). The differences between the
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two choices, as indicated by Haglund (1992), are negligible and in the case of a 1D signal,
there will be no difference at all between the two methods. We will use the new technique
because it is more hardware friendly since it does not suffer from feature dependencies.

c ¼
X
i

ci

s ¼
X
i

si

Plocal ¼ arctan s=c
� �

ð10Þ

Finally, relative to the arctan function implementation (presented as problem III) the
main goal is to optimise accuracy vs. resource consumption trade-off. The techniques used
for this issue are briefly explained in Section 4.

3. Model accuracy degradation due to fixed point arithmetic

The effect of the arithmetic representation and bit-width quantisation on the embedded
system design has a critical impact in terms of resource consumption and system
performance. Current standard processors use floating point representation, which has
very large data range and precision, but digital circuits usually use fixed point
representation with a very restricted number of bits. This is necessary because
reconfigurable devices still cannot afford floating point arithmetic when implementing
long-datapath pipelined computing architectures that may have a large number of
processing elements. The quantisation effects should be properly studied to ensure that
the data dynamic range is properly adjusted and the bit quantisation noise is kept at a
small value. Therefore, this has motivated the bit-widths analysis of the system
implemented by other authors (Voß and Mertsching 2001; Bouganis et al. 2004; Darabiha
et al. 2006).

We have made a detailed analysis using the tool MCode for DSP Analyzer described in
Dı́az (2006a). The error metric for evaluating the system degradation has been the signal to
quantization noise ratio (SQNR). The system here developed is intended to be used in the
framework of the European project DRIVSCO (DRIVSCO 2007). It will be part of a
hybrid system (hardware–software) for computing low-level vision cues (motion, stereo,
object descriptors, etc.). In this context, hardware quality constrains the global accuracy
baseline, thus this motivates the design of a high accuracy system. From these
requirements, it is quite difficult to indicate an SQNR quality threshold (moreover, if
we consider that this value is different for each image depending on its structure).
Therefore, we have experimentally determined which values of SQNR produce quantised
feature outputs which are almost indiscernible by visual inspection of the floating point
versions. From that and as affordable values, we conclude that SQNR should be above
40 dB for energy, 25 dB for orientation, and 20 dB for phase.

In our system, we use multiple data word-lengths to tune each stage accuracy demands.
The main designing decisions are outlined in structuring the model in the following stages:

(1) Convolution kernel weights of the Gxx, Gxy, Gyy, Hxx, Hxy, Hyx, and Hyy.
(2) Convolution output results for this filter bank.
(3) Oriented quadrature filters after steering operations.
(4) Trigonometric functions (sin, cos and their powers or multiplications) that are used

at the steering and interpolation stages.
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
G
r
a
n
a
d
a
]
 
A
t
:
 
1
8
:
2
0
 
1
6
 
N
o
v
e
m
b
e
r
 
2
0
0
9



(5) Main non linear operations: division and arctan.
(6) Estimated goal features: local energy, phase and orientation.

The data outputs of each stage have been properly scaled between the different stages
[see Dı́az et al. (2007c) for details]. The first two stages are the ones that constrain most
the system accuracy. Therefore, we have parameterised our analysis according to the bit-
width of these stages. In Figure 2(a,b), we present our analysis for a test bank of six
images.

In our final system implementation, we have taken 13 bits for the kernels (according to
results of Figure 2(b) right image) and 11 for the convolution outputs. Trigonometric
functions require only 9 bits. Arctan function uses 24 bits. Finally, because orientation and
phase are angles and therefore their dynamic ranges are well defined (0 to p for orientation
and 7p to p for phase), we have used 9 bits to represent their values. For the energy, the
dynamic range depends on the convolution output bit-widths. We have used 22 bits to
achieve satisfactory results. Note that the differences between floating point and fixed
point representation of Figure 2(c,d), although numerically significant, are not visible on
the qualitative evaluation. This validates the previous choices as good alternatives for
hardware implementation.

The final SQNR values for the different images with the bit-widths decisions
commented above are summarised in the Table 1.

4. System architecture details

The Equations (7), (9) and (10) have been used for designing our real-time architecture
with reconfigurable hardware. This is a technology that is being used in very different
research fields, such as mobile robotics (Bonato, Fernández and Marques 2006), network
intrusion detection (Clark, Ulmer and Schimmel 2006), cryptography (Kerins, Marnane
and Popovici 2006), etc. and that has demonstrated a high performance for image
processing applications (Dı́az et al. 2006b; Dı́az et al. 2007a,b).

The final system is a long-datapath pipelined architecture whose parallelism grows
along the stages to keep our throughput goal of one pixel output for clock cycle. This is a
key factor to achieve high performance in our system. Architectures based on resources
(processing units) sharing techniques require more than one clock cycle for each feature

Figure 2. Image feature computation with a bank of six images and several data representations
and bit-widths. Results obtained without any confidence threshold. (a) Input images chose for the
test. (b) SQNR (dB) evolution for different bit-width configurations. The y-axis represents the
SQNR values, and x-axis, the convolution output bit-widths. Figure (b) left and right uses
convolution kernel coefficients quantised respectively with 11 and 13 bits. They represent the results
obtained for each of the six figures of (a), computed from left to right top to bottom. Six different
curves corresponding to each input image are presented at each plot using a marker, respectively the
plus sign, asterisk, cross, circles, squares and diamond. Note that although the SQNR is different for
each figure, the line trends are the same in all cases. The accuracy differences are produced by the
differences in the structure of the images. (c) Image primitives computed using software with double
precision floating point representation for the last right-bottom image. This is a synthetic image with
multiple orientation and spatial scales that help to illustrate the degradation caused by our bit-width
decisions. (d) Image primitives for the synthetic image computed using fixed point data
representation with the final system bit-width choices. Energy colourmap encodes contrast variation
using warm colours to represent high contrast areas. The orientation direction is encoded on the
frame of the picture and phase information uses a colourmap from orange to blue to encode + �
values. These images are available in colour online.
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estimation. This allows to reduce hardware resource utilisation but forces us to work at
high clock frequency values to achieve the same performance. This is not always feasible
or could be hard to be put into practice (very fine-grain operation pipelining could be
required). Therefore, we decide to implement a one pixel output for clock cycle
architecture which is able to achieve high performance even working at low clock
frequency values.

In the design process, data dependencies have been eliminated to simplify the
processing and also to allow independent processing datapaths [see Equations (9) and
(10)]. The main circuit stages are described on Figure 3, each of them is finely pipelined to

Table 1. Energy, orientation and phase SQNR for each test image of Figure 2 computed with fixed
point arithmetic.

SQNR

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 SQNR (mean)

Energy 43.57 44.1 44.11 43.59 43.42 42.73 43.57
Orientation 25.34 26.73 27.47 26.52 27.41 30.27 27.29
Phase 25.33 26.41 20.05 24.26 28.00 22.00 24.34

Mean SQNR values are indicated as global quality reference.

Figure 3. Image feature processing core. Coarse pipeline stages are represented at the top, and
long-datapath scalar units, at the bottom. The number of parallel datapaths increases according to
the algorithm structure. The whole system has more than 59 pipelined stages (without counting other
interfacing hardware controllers such as memory or video input/output interfaces). This allows to
compute the three image features at one estimation per clock cycle. The number of substages for each
coarse-pipeline stage is indicated in brackets in the upper part of the figure.
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achieve our throughput goal. Note that the coarse parallelism level of the circuit is very
high (for example, stage S1 requires 16 parallel paths, eight for the orientation and 2 filter
types, odd and even each). Stage S0 is basically composed of seven separable convolvers
corresponding to the convolutions with Gxx, Gxy, Gyy, Hxx, Hxy, Hyx and Hyy kernels. The
separability property of the convolution operation allows computing first the convolution
by rows and after that, by columns. This configuration requires only 8 double port
memories shared by all the convolution modules. They are arranged storing one image
row at each memory to allow parallel data access at each column. This stage S0 is finely
pipelined in 24 microstages as indicated in brackets in the upper part of Figure 3.

Stage S1 is used to compute the oriented Quadrature filters. This is achieved by
multiplying each output of stage S0 by some interpolation weights as shown on Equation
(5). These coefficients are stored using distributed registers for parallel access. In a
sequential approach, they could be stored using embedded memory but the required data
throughput makes necessary a full parallel access to all, invalidating therefore this
memory-based configuration.

Stage S2 computes the image features from this set of odd and even complex filters.
Figure 3 shows the three different computations which calculate the local features of
orientation, phase and energy. Note that the last stage S2 has different latencies (7, 27 and
30) for each feature (Energy, phase, and orientation). Nevertheless, because we need all of
them at the same time, we use delay buffers to synchronise the outputs. The three
independent datapaths of stage 3 are described in section 4.1.

4.1. Highly parallel circuits for features interpolation between different
orientation-based estimations

Stage S2 of Figure 3 shows three different datapaths which are described in detail in this
section. Because our target system requires to generate a feature estimate per clock cycle,
we have focussed on a highly parallel implementation of these circuits.

In Figure 4, the local energy computing architecture which implements the Equation
(6) is presented. The system computed the local energy at each orientation and then, using
an adder tree, it calculates the total energy value and its mean value dividing it by 8.

In Figure 5, we estimate local orientation. The system takes the local energy estimated
at each orientation from the previous described stage. They are weighted using the
trigonometric weights described in Equation (9) and finally, the arctan function is
computed using a CORDIC-based circuit (see a comparison between LUT or CORDIC
methods on section 4.2) to get the orientation estimation.

Finally, Figure 6 schematically illustrates the architecture that implements Equation
(10) to compute the local phase. This is composed by two adder trees and an arctan
computation module.

Note that, due to the different computations executed by each processing unit and the
constraint of feature estimation per clock cycle, this leads to different pipeline lengths
which motivates the inclusion of the synchronisation buffers shown in Figure 3.

4.2. Analysis of the resources utilisation and performance

For the sake of hardware feasibility, we should take into account the hardware resources
to achieve a good trade-off between resource consumption and system accuracy. In section
3 and in Dı́az et al. (2007c) we explore the different data bit-width choices and their impact
on the final system accuracy. These results are presented in section 3. In addition, we have
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analysed the resource consumption for different bit-width system configurations. This is
graphically presented in the hardware resource vs. bit-width evolution shown in Figure 7.
We have used as input parameters the convolution output bit-width and scaled the other

Figure 5. Image features core, stage S2, orientation computation. This stage corresponds to the
implementation of Equation (9). The local energy computed at each orientation on the energy path is
the input of this stage. Each oriented energy is multiplied by its own orientation weight and then, it is
added using a binary adder’s pipelined tree. Final orientation angle is computed using a CORDIC
core customised for our application. All these operations are computed using 30 pipeline stages and
this is the largest path of stage S2.

Figure 4. Image features core, stage S2, Energy computation. This stage corresponds to the
implementation of Equation (6). The mean energy is computed using a binary adder pipelined tree.
Normalisation (dividing by 8) is computed by shifting operations. All these operations are computed
using seven fine pipeline stages but a memory buffer is connected to its output for synchronisation
with other image features.
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variable to keep the accuracy. Note that the trade-off depends on the proposed
architecture and design parameters. The number of slices grows approximately in an
exponential way. This is mainly caused by the non-linear stages whose expansion does not
follow a linear tendency. The clock frequency of the system decreases down to a minimum
value of (approximately) 50 MHz. This stable minimum can be explained based on the
synthesis tool properties. Our design uses the retiming capabilities of the DK synthesiser
(RC300 2008). This allows redistributing combinational logic across the register’s paths to

Figure 6. Image features core, stage S2, phase computation. This stage corresponds to the
implementation of Equation (10). The sum of odd and even filters is computed using a binary adder’s
pipelined tree. Phase angle is computed using a CORDIC core customised for our application. All
these operations are computed using 27 pipelines stages, and thus, we need to use a memory buffer
connected to its output for synchronisation purposes with other image features.

Figure 7. Hardware resource consumption and system clock frequency vs. convolution output bit-
width. We can address the different configuration studies because the design technique allows to
automatically scan data bit-width and to scale changes (just by adjusting some predefined
parameters). We have marked with a circle our design choice which corresponds to the configuration
described in Section 3.
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increase the circuit speed. When the bit-width grows, we increase the number of pipeline
stages to compensate this effect. For small bit-widths, retiming does not produce any
effects but, for larger values, retiming is able to reduce the combinational paths, increasing
the maximum system clock frequency up to this value. Nevertheless, as the frequency
change is less than 14% of the peak value, we consider that this is not of significant
relevance on the synthesis process and therefore, it can be biased by the parameters of the
optimisation tools.

Based on the analysis in Dı́az et al. (2007c), summarised on section 3, and the results of
Figure 7, we have chosen the bit-widths described in section 3, which are 13 bits for the
kernels coefficients and 11 for the convolution outputs. The trigonometric LUT values use
9 bits. Intermediate values are properly scaled to keep the data accuracy. The final
orientation and phase results use 9 bits and 22 bits for the energy. In Section 4.1,
we commented that arctan function (required at the orientation and phase circuits) has
been implemented using the CORDIC technique. This is supported by the following
results.

We have tested a customised implementation based on LUTs and the CORDIC core
taken from the Coregenerator tool integrated in the ISE Foundation of Xilinx (Xilinx 2007).
Our results are summarised in Table 2. Although LUT approach requires fewer resources,
it has a lower precision (we use an 8 Ksample LUT, using the symmetries of the arctan
function, this circuit has an equivalent data input precision of 15 bits). LUT table
extension requires increasing the memory decoding logic which actually affects the speed
of the whole circuit (only 42 MHz). This logic can be also pipelined to increase the clock
rate but the logic required makes the approach based on the CORDIC core more suitable
for our implementation. LUT approach can be improved by samples interpolation or by
techniques as presented in (Sasao, Nagayama and Butler 2007) which could be used to
reduce table size and logic. We have not explored these alternatives because the CORDIC
technique fulfills our requirements, but this could be done as one of the future system
improvements.

The whole architecture has been implemented on the RC300 board (see RC300 2008).
This prototyping board is provided with a Virtex II XC2V6000-4 Xilinx FPGA as
processing element, including also video input/output circuits and user interfaces/
communication buses. The final required hardware consumption and performance
measures of our implementation are shown in Table 3.

Detailed information about the image features architecture and the coarse pipeline
stages are shown in Table 4. Note that the sum of the partial stages is not the total number
of resources. This can be easily explained based on the synthesis tools. The DK synthesiser
(RC300 2008) does a flat expansion before addressing a global optimisation and synthesis.
For the whole system, it is more likely that the synthesiser engine can share some resources
and reduce hardware consumption. This also explains why the whole system has a lower

Table 2. Arctan function implementation approaches.

Method Slices EMBs Multipliers fclk_max (MHz)

CORDIC core 1020 0 0 118
LUT-Arctan 841 5 0 42

CORDIC core uses data input with 21 bits. The LUT uses 8 Kwords to sample the arctan function. Decision logic
allows to extend the range from the sampled interval [0, p/2] to the whole circumference.
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clock frequency than the slowest subsystem (stage S1 runs at 69 MHz and the whole core
only at 58 MHz). By modular code stages synthesis, this effect can be avoided.
Furthermore, more pipelining could be used to increase the system performance and
produce a very fine-grain pipelined architecture. Our system is fine-grain in the sense that
it uses one clock cycle per operation but some arithmetic operations have long
combinational paths which reduce the global system clock. Because of the fact that the
current performance already fulfils our requirements, we have left out these optimisations,
but further code modularisation and very fine-grain arithmetic unit pipelining could be
done if required.

We have not explained yet why the number of multipliers grows on the complete
system with respect to the sum of the multipliers used at each substage. We have used
automatic inference of multipliers on the system. As the number of multiplications by
constants is high, it is difficult to manually determine the time when it is better to use an
embedded multiplier or to compute it using FPGA logic. Synthesis tools define cost
functions that are able to evaluate this based on technological parameters for each
multiplication, which is the best option. We have compared the manual and the automatic
inference of multipliers and, though differences are not large, automatic inference usually
achieves higher clock rates than manual generation with slightly less logic. This automatic
inference changes depending on the circuit that is being synthesised and produces the
differences presented in Table 4.

The final qualitative results for a test image are shown in Figure 8. Though there are
significant differences in the bit-width between the software and hardware data, the high
SQNR guarantees high accuracy with imperceptible degradation.

Table 4. Partial system resources required on a Virtex II XC2V6000-4 for the coarse pipeline stages
described for this circuit.

Circuit stage Slices (%) EMBS (%)
Embedded

multipliers (%) fclk (MHz)

S0 Gaussian base convolutions 4170 (12) 8 (5) 50 (34) 85
S1 Oriented quadrature filters 1057 (3) 0 0 69
S2 Features Energy, Phase,

and Orientation computation
2963 (8) 0 6 (4) 89

Whole processing core 7627 (22) 8 (5) 65 (45) 58.8

Results obtained using the Xilinx ISE Foundation software (Xilinx 2007). EMBS, embedded memory blocks.

Table 3. Complete system resources required for the local image features computing circuit.

Slices (%) EMBS (%) Embedded multipliers (%) Mpps Image resolution Fps

9135 (27) 8 (5) 65 (45) 56.5 1000 6 1000 56.5

The circuits have been implemented on the RC300 prototyping board (RC300 2008). The only computing element
is the Xilinx FPGA Virtex II XC2V6000-4. The system includes the image features processing unit, memory
management unit, camera Frame-grabber, VGA signal output generation and user configuration interface.
Results obtained using the Xilinx ISE Foundation software (Xilinx 2007). Mpps, mega-pixels per second at the
maximum system processing clock frequency; EMBS, embedded memory blocks.
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5. Conclusions

In this contribution, we have presented a hardware system capable of computing into the
same chip local image energy, phase and orientation using reconfigurable hardware. The
system uses Second Order Gaussian derivatives to implement hardware friendly
Quadrature filters. A modification of the Haglund technique (Haglund 1992) is used for
features interpolation between the different orientations.

Our target goal has been to achieve a very high performance which is required for the
target specifications addressed, for instance, on complex vision projects such as DRIVSCO
(DRIVSCO 2007). To get that, a superscalar (understanding as such as parallel replication
of processing units) and long-datapath pipelined computing system has been designed. A
careful utilisation of the different stage data word-lengths allows us to arrive at a high
accuracy system with very low degradation due to the fixed-point arithmetic quantisation
effects at a reasonable system hardware resource utilisation.

The final system is able to compute more than 56 Mpixels per second using less than
22% of the resources of a Virtex II XC2V6000. The image resolution can be adapted to
each target application. The superscalar and long-datapath pipelined architecture
proposed fulfills our requirements and illustrates that, even with a low clock rate, a well
defined architecture can achieve high computing performance unviable with current
general purpose processors.

Future work will address the use of this system as a first stage of stereo and motion
computing system. Furthermore, we plan to study the implementation of this system using

Figure 8. System results for the known image of Lena (top image). The three bottom pictures
present the computed features for this image using the same colour encoding used in Figure 2. Note
that, although restricted fixed-point arithmetic is used, the quality of the features is high as can be
seen looking at small details such as the hat’s plumes.
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image analysis at different resolutions, trying to properly sample the spatial frequency
spectrum of the images. Finally, we also plan to evaluate different resource sharing
techniques to reduce the system utilisation resources.
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