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Abstract

A novel stabilization method is introduced that enables the extraction of op-
tic flow from short unstable sequences. Contrary to traditional stabilization
techniques that use approximative global motion models to estimate the full
camera motion, our method estimates the unstable component of the camera
motion only. This allows for the use of even simpler global motion models,
while at the same time extending the validity to more diverse environments,
such as close scenes containing independently moving objects. The unstable
component of the camera motion is derived for each frame by maximizing the
temporal constancy of the local velocities over the entire short sequence. The
method is embedded within a phase-based optic flow algorithm and tested on
complex real-world sequences. The optic flow obtained using our technique
is much denser than that extracted directly from the original sequence. The
proposed method also compares favorably to a more traditional stabilization
technique.

1 Introduction

Visual motion is a powerful sensory cue used by humans for such diverse purposes as
self-motion estimation, extracting the three dimensional (3D) structure of the environ-
ment and detecting independently moving objects. This information is crucial for naviga-
tion, obstacle avoidance,etc. Due to the ill-posedness of the problem and external noise
influences, extracting the local velocity or optic flow field from an image sequence is dif-
ficult. The quality can be greatly increased by exploiting some of the redundancy present
in a short (e.g.five frames) image sequence. By assuming that the local velocities remain
constant over this short sequence, more stable numerical differentiation techniques can
be used, temporal aliasing can be reduced, and more reliable confidence measures can
be computed [3, 9]. If both observer and moving objects undergo smooth motion, this
velocity constancy assumption is satisfied in the majority of the scene (except in regions
that become occluded during the sequence). In realistic situations however, shocks and

∗K.P. and M.M.V.H. are supported by the Belgian Fund for Scientific Research – Flanders (G.0248.03,
G.0234.04), the Flemish Regional Ministry of Education (Belgium) (GOA 2000/11), the Belgian Science Policy
(IUAP P5/04), and the European Commission (NEST-2003-012963, IST-2002-016276, IST-2004-027017).



vibrations of the vehicle or robot on which the camera is mounted result (predominantly)
in fast rotational camera movements that induce large local motions over very short time
spans [5]. As a result, the velocity constancy assumption is no longer valid and optic flow
algorithms fail to extract meaningful motion vectors.

A typical solution is to stabilize the image sequence first. Since the unstable com-
ponent of the camera motion is combined with the component that results from the self-
motion, traditional stabilization techniques estimate the full camera motion and smooth it
afterwards [13]. This camera motion can be decomposed into a 3D translation and a 3D
rotation. The local motion field resulting from camera translation depends on the scene
structure whereas that resulting from the camera rotation does not. Since both are com-
bined, estimating camera motion in general situations is a nontrivial problem and most
algorithms developed for this purpose work well in specific domains only [15]. Some sta-
bilization techniques usea priori knowledge (presence of the horizon, lane markings, the
road vanishing point,etc.) to simplify this estimation [5, 12]. This limits their applicabil-
ity to situations where the required features can be reliably obtained. Most stabilization
methods rely on simplified motion models instead (translation; translation, rotation and
scaling; affine; quadratic; projective) and only approximate the camera motion. These
models are only valid in limited scenarios (e.g.aerial imagery) and when they are used in
more complex situations (e.g.driving a vehicle downtown or during vehicle turns) the sta-
bilization algorithm typically tracks a dominant component of the background for which
the model is sufficiently rich (e.g. the ground plane). Due to changes in the environment
however, this dominant component changes also and abrupt changes in the estimated cam-
era motion can result. For this reason, current image stabilization techniques fail when an
image contains close scenes [14].

We propose a method that allows estimation of the unstable component of the camera
motion only. Since this unstable component consists primarily of 3D rotations, a simple
global motion model is sufficient for its estimation. Instead ofassuminglocal velocity
constancy, weenforceit and in this way exploit the fact that stable motion should result
in velocity constancy locally in the majority of the scene, irrespective of the complexity
of the camera motion, scene, and moving objects. By tightly integrating the stabiliza-
tion with the optic flow computation, the deviations from local velocity constancy can be
measured explicitly and used to estimate a global 3D rotation for each frame of the short
sequence. After correcting for these rotations, the local velocity constancy and the qual-
ity of the optic flow increase greatly. Since we use only 3D rotations in the correction,
the component of the flow that results from camera translation is left untouched. Conse-
quently, the flow vectors can still be used in a variety of tasks (egomotion, structure from
motion, independent motion,etc.can still be extracted).

The proposed stabilization technique is explained in Section 2 and extensively eval-
uated on two real-world sequences in Section 3. In this evaluation, the algorithm is also
compared to a traditional stabilization method. Finally, concluding remarks are given in
Section 4.

2 Image Sequence Stabilization

Our technique is embedded in an existing phase-based optic flow algorithm that we briefly
present in Section 2.1. The chosen algorithm is particularly suitable for stabilization



since it relies on spatial filtering only. The proposed stabilization method is explained in
Section 2.2 and a multiscale extension of the method that allows for large instabilities is
discussed in Section 2.3.

2.1 Phase-based Optic Flow using Spatial Filtering

Fleet and Jepson [7] were the first to propose a phase-based technique for the estimation
of optic flow and showed that the temporal evolution of contours of constant phase can
yield a good approximation to the motion field. The proposed stabilization method centers
around the phase-based optic flow algorithm by Gautama and Van Hulle [9]. The method
distinguishes itself from [7] by using spatial instead of spatiotemporal filters to compute
the phase, and by considering strictly local information when integrating component ve-
locities (normal flow) into full velocities (optic flow). In an extensive comparison, similar
to that from [3], the algorithm has been shown to rank among the best ones [9].

For a specific orientation, the spatial phase at pixel locationx = (x,y) is extracted
using 2D complex Gabor filters:

G(x, f) = e−‖x‖
2/σ2

ei x·f , (1)

with peak frequencyf = ( fx, fy). We refer to [9] for a discussion of the filterbank. The
response to this oriented filter can be written as:

R(x) = ρ(x)ei φ(x) = C(x)+ iS(x) . (2)

Hereρ(x) =
√

C(x)2 +S(x)2 andφ(x) = arctan[S(x)/C(x)] are the amplitude and phase
components, andC(x) andS(x) the responses of the quadrature filter pair. For every ori-
entationθ , the temporal phase gradient,φt,θ (x), is computed from the temporal sequence
of the spatial phase at that location,φθ (x, t), by performing a linear least-squares fit to the
model (see also Fig. 1):

φθ (x, t) = cθ (x)+φt,θ (x)t . (3)

A simple unwrapping technique is used to cope with the periodicity of the phase. Next,
for each orientationθ a component velocity is computed directly fromφt,θ (x):

vc,θ (x) =
−φt,θ (x)

2π( f 2
x,θ + f 2

y,θ )
( fx,θ , fy,θ ) . (4)

Note that the spatial phase gradient is substituted by the radial frequency vector. The
reliability of each component velocity is measured by the mean squared error (MSE) of
the linear fit:∑t

(
∆φθ (x, t)

)2
/n, wheren is the number of frames and:

∆φθ (x, t) =
(
cθ (x)+φt,θ (x)t

)−φθ (x, t) . (5)

Finally, provided a minimal number of reliable component velocities are obtained (thresh-
old on the MSE), an estimate of the full velocity is computed for each pixel by integrating
the valid component velocities at that pixel only:

v∗(x) = argmin
v(x)

∑
θ∈O(x)

(
‖vc,θ (x)‖−v(x)T vc,θ (x)

‖vc,θ (x)‖
)2

, (6)

whereO(x) is the set of orientations at which valid component velocities have been ob-
tained for pixelx.



Figure 1: Temporal phase gradient linearization. For each orientation and pixel, the tem-
poral phase gradientφt(x) is computed by fitting a line through the spatial phasesφ(x, t)
computed at each frame. The proposed stabilization method aims at minimizing the devi-
ations∆φ(x, t) from this estimated line by applying a global 3D stabilizing rotation∆ω(t)
to each frame.

Figure 2: Stabilization overview. (A) A sliding window (consisting of three frames in
the figure) is used to compute optic flow for the central framet. (B) The spatial phase
φθ is computed for each pixel, orientationθ (two orientations in the figure) and frame
t. The temporal phase gradientφt,θ is obtained for each pixel and orientation by fitting a
linear model to the temporal sequence of the spatial phase. (C) The ‘unstable’ component
velocities∆vc,θ are obtained for each frame and orientation from the errors between the
spatial phases and this linear model. (D) A 3D stabilizing rotation∆ω(t) can be estimated
for each framet by integrating the ‘unstable’ component velocities over all pixels and
orientations using a linear model. (E) These stabilizing rotations define a stabilizing full
velocity field for each frame, which can be used to warp the images (or the Gabor outputs
or the phases) and to obtain a stable sequence.



2.2 Temporal Phase Gradient Linearization

As mentioned in the introduction, the proposed method searches for a global 3D cam-
era rotation for each frame of a short sequence that, when applied to these frames (by
warping), maximizes the temporal constancy of the local velocities over the entire short
sequence.

The basic idea of the method is illustrated in Fig. 1. Shown in this figure is the
temporal sequence of spatial phase (after phase unwrapping) obtained at a certain pixel
and for a certain orientation. A line is estimated through these points and the temporal
phase gradientφt(x) is obtained. Local velocity constancy is typically reflected in a linear
evolution of the phase over time and in small errors in the line-fitting. This is clearly not
the case here. The goal now is to warp the frames in such a way that the deviations from
this line (small arrows) are minimized. The desired changes are computed for each pixel,
orientation and frame using Eq. (5). Note that, similar to the temporal phase gradient
(Eq. 4), this desired change in the spatial phase can also be interpreted as and transformed
into a component velocity:

∆vc,θ (x, t) =
−∆φθ (x, t)

2π( f 2
x,θ + f 2

y,θ )
( fx,θ , fy,θ ) . (7)

This component velocity now reflects the local effect (orthogonal to the filter orientation)
of the unstable component of the camera motion. Since we know that this component is
predominantly 3D rotational [5], its estimation is straightforward. The instantaneous full
velocity at pixel locationx that results from a 3D camera rotation,ω = (rx, ry, rz)T, with
rp the angular velocity around thep-axis, can be well-approximated by [1]:

v(x) = B(x)ω , (8)

where

B(x) =
[

xy/ f − f −x2/ f y
f +y2/ f −xy/ f −x

]
, (9)

and f the focal length of the camera. For component velocities we have:

‖vc,θ (x)‖=
(
B(x)ω

)T vc,θ (x)
‖vc,θ (x)‖ . (10)

On the basis of the unstable component velocities,∆vc,θ (x, t), computed at each pixel,
frame and orientation we can now estimate, for each frame, the required stabilizing rota-
tion, ∆ω(t), by solving the following linear least-squares problem:

∆ω∗(t) = argmin
∆ω(t)

∑
x,θ

[
‖∆vc,θ (x, t)‖− (

B(x)∆ω(t)
)T ∆vc,θ (x, t)
‖∆vc,θ (x, t)‖

]2

. (11)

Once the stabilizing rotations are found, they are used to correct the sequence and the
optic flow is recomputed. The corrections can be done by warping the images or, more
efficiently, the Gabor filter outputs (Eq. 2). An overview of the complete stabilization
procedure is provided in Figure 2.



Figure 3: Multiscale stabilization.

Note that not all deviations from linearity in Fig. 1 result from instabilities. Other dis-
turbing factors are image noise, phase singularities, motions exceeding the filter range,etc.
These latter errors are however much weaker correlated compared to those resulting from
the instabilities. Due to the sheer volume of available measurements, robust and precise
rotation estimates can still be obtained.

An important limitation of the method discussed in this section is that the magnitude
of the effect of the unstable camera motion component has to be within the range of the
Gabor filters. To extend this range and to enable the method to also detect and correct
large rotational shocks, the stabilization technique can be embedded in a coarse-to-fine
multiscale implementation of the optic flow algorithm. This is the subject of the next
section.

2.3 Multiscale Extension

Due to phase periodicity, phase-based techniques can only detect shifts that do not exceed
half the filter wavelength. To extend this range, a coarse-to-fine control strategy can be
used [8]. An efficient solution involves the use of an image pyramid, in which the image
resolution is halved at each level. By applying the original filters to each level of the
pyramid, the detectable range of shifts is doubled at each level. The control strategy starts
at the lowest resolution and uses optic flow estimates obtained there to warp the images
at the next higher resolution so that the estimated motion is removed [4]. The residual
motion is then within the range of the filters applied at that level.

The optic flow algorithm we use is particularly suitable for this warping strategy since
it uses strictly local information. In a similar fashion as in Section 2.2, we do not warp
the images themselves but rather the filter outputs. In our implementation, only optic
flow vectors that can be computed reliably at the highest resolution are retained. In other
words, if the refinement made at the highest resolution to a lower resolution estimate (that
was reliable at that lower resolution) is unreliable, the flow vector is discarded and not
included in the density counts of the next section. In this way, overly smooth flow fields
are avoided.

Figure 3 contains a schematic overview of the coarse-to-fine control strategy used in
the proposed stabilization technique. The procedure starts at the lowest resolution. The
spatial phaseφ is computed at this level and the stabilizing rotations∆ω are estimated
as explained in Section 2.2. These rotations are then used to warp the filter outputs and
compute the stable phaseφ s and stable full velocitiesv. The stabilizing rotations and
full velocities are then transformed (multiplied by two) to the next scale and the filter



single scale multiscale

seq ORG TRA PGL ORG TRA PGL

city 31.5 37.1 40.1 37.9 44.8 52.2
mway 22.6 26.2 25.8 32.0 32.8 37.1

Table 1: Average flow field density (in percent).

outputs at that level are warped to compensate for the effects of these motions. Next, the
stabilization procedure is applied to this motion-compensated phaseφw and a refinement
of the stabilizing rotations is obtained. The filter outputs are then rewarped to incorporate
this refinementφw,s and the residual full velocities are computed. Finally, the updated
rotations and full velocities are propagated to the next level and the procedure is repeated
until the original resolution is obtained.

3 Results

We evaluate the proposed Phase Gradient Linearization method (PGL) in terms of the
optic flow density (the percentage of reliable flow vectors) obtained before and after sta-
bilization. A full velocity is considered reliable if the MSE of the linear fit (Eq. 3) does
not exceed 0.01 for at least five (out of 11) of the component velocities used in its estima-
tion. Five frames are used in the computation and three scales are used in the multiscale
implementation of the algorithm. We also evaluate the optic flow density after stabiliza-
tion with a popular alternative stabilization technique. This technique (TRA) estimates a
2D translation globally by matching the images as a whole [2]. We use the normalized
cross correlation measure for reliable matching. Subpixel accuracy is obtained by refin-
ing this estimate with a gradient-based technique [10]. Central differences are used to
estimate the spatial derivatives. This combined procedure enables high-precision image
registration. A linearization procedure similar to that shown in Fig. 1 is used to correct the
individual 2D translation estimates and to render the estimated camera motion constant
over the short sequence (a unique transformation is obtained by fixing the central frame).

Both techniques are applied to two complex real-world driving sequences, recorded in
different environments. The sequences have been recorded with a camera rigidly installed
behind the front shield of a moving car1. The first one,city, contains close scenes and
relatively small vehicle velocities whereas the second sequence,mway, involves larger
vehicle speeds and also larger destabilizing motions. Moving objects are present in both
sequences. An example image of each sequence, together with the optic flow computed
for these frames is shown in Fig. 4. It is clear from this figure that the flow computed after
stabilization with PGL looks very similar to that computed without stabilization (ORG),
except for the greatly increased density. This is because the stabilization procedure aver-
ages out the instabilities over the entire short sequence.

The complete sequences each consist of± 450 frames of320×256 pixels, and the
obtained optic flow densities are summarized in Table 1. A two-way ANOVA and Tukey
multiple comparison test [11] have been used to asses the significance of all individual

1Courtesy of Dr. Norbert Kr̈uger, Aalborg University Copenhagen, and HELLA Hueck KG, Lippstadt.



A B C D E

Figure 4: Example images (A) and flow fields (B–E) obtained on thecity (top row) and
mway(bottom row) sequence without stabilization using (B) single scale and (C) multi-
scale optic flow, and with the proposed stabilization using (D) single scale and (E) multi-
scale optic flow. All flow fields have been subsampled and scaled 10 times.
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Figure 5: Optic flow field density. (A–D) Results obtained without stabilization (black
dots) and after stabilization with the proposed method (solid line) over the entirecity
(left) andmway(right) sequences. The first and second row correspond to the results
obtained with the single and multiscale algorithm respectively. (E,F) Results obtained
with the alternative stabilization method (TRA) on both sequences using the multiscale
implementation.



pairwise differences in mean density at the joint significance level of 0.05. The mean
density is underlined in the table if all pairwise differences in which the respective algo-
rithm occurs are significant. This analysis is repeated for each combination of sequence
and control strategy (single scale/multiscale). The multiscale strategy improves the den-
sity on all occasions. The TRA stabilization technique significantly improves the density
as compared to the original sequences, but the proposed method achieves far better results
in general and in the multiscale scenario in particular.

Figure 5 shows the improvements obtained with PGL in more detail. In this figure
the optic flow density is shown as a function of frame number for the entire sequences.
In Figs. 5(A–D), the densities obtained without stabilization are shown as black dots and
those obtained after stabilization with PGL as solid lines. We can already see signifi-
cant improvements in the single scale case but the technique fails at certain frames (e.g.
around frame 150) incity and at various locations inmway. The multiscale stabilization
overcomes this problem, which clearly shows that large unstable motions are present here
(the multiscale results without stabilization are as bad as the single scale at these frames).
In the multiscale case, an almost constant density stream of optic flow is obtained over
the entire sequences after stabilization. For completeness, the density obtained with TRA
is shown in Figs. 5(E,F). Due to the prevalence of close scenes incity, the procedure fails
often. Better results are obtained onmway, but the stabilization is still unreliable and the
density is often smaller than that obtained without stabilization.

To make sure that the weaker results of TRA are not from its inability to model rota-
tions around the line of sight, we have repeated the simulations with the proposed method,
but now using a simple 2D translation model in Eq. (11). The results were not significantly
different from those obtained with the full 3D rotation model. This could be either be-
cause instabilities do not result in rotations around the line of sight in these sequences or
because of inaccuracies resulting from rotating (warping) the filter outputs. Since rota-
tions change the orientations, refiltering or a more efficient framework such as steerable
filters [6] may be required to further improve the precision. The latter allows for changes
in orientation without refiltering. This is a subject of further investigations.

4 Conclusion

We have proposed a novel stabilization technique that does not require estimation of the
full camera motion but enables a direct estimation of the unstable component of the cam-
era motion. This is achieved through a maximization of the temporal constancy of the
local velocities. The method is computationally efficient as it involves linear systems and
simple transformations, the result of which can be computed without time-consuming re-
filtering. Although we use a global motion model of similar complexity, we achieve sig-
nificant increases in reliable optic flow density on real-world sequences as compared to a
traditional stabilization technique. It is true that evermore complex global motion models
can be used to more accurately model the camera motion in alternative techniques, but this
will be at the cost of efficiency, stability, and simplicity. Our method on the other hand
is simple and valid in the most general of scenes, those where the distance to the scene is
small, the range of depths within the scene is large, and moving objects are present. By
using only 3D rotations in the stabilization, the information in the optic flow that relates
to the depths of the scene is left undisturbed.
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