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A General Data Fusion Problem

How do we make a mental ”image” of a meal

• taste bitter, rotten

• smell pleasant, spices

• vision colour, presentation, rare, medium, well done

• touch bread, toast

• hearing, temperature, toughness
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Data/Sensor Fusion Models
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Signal processing algorithms for “sensor” or “data fusion” are based on:-

~ Probabilistic models: Bayesian reasoning, belief propagation, evidence
theory, robust statistics;

~ Least squares: Kalman filtering, regularization, set membership;

~ Intelligent fusion: Fuzzy logic, neural networks, genetic algorithms;

~ Time–frequency analysis based fusion.
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Benefits of the Data Fusion Approach

The synergy of information fragments offers some advantages over
standard algorithms, such as:-

• Improved confidence due to complementary and redundant information;

• Robustness and reliability in adverse conditions (smoke, noise,
occlusion);

• Increased coverage in space and time; dimensionality of the data space;

• Better discrimination between hypotheses due to more complete
information;

• System being operational even if one or several sensors are
malfunctioning;

• Possible solution to the vast amount available information.
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Some Literature
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Data Fusion via Fission
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2 Fission : Decomposion into “particles”

2 Fusion: Recombination of particles into the desired signal
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Empirical Mode Decomposition

The empirical mode decomposition (EMD) is a fully data driven method
for decomposing (mutilticomponent) signals into a set of modes that are:

2 monocomponent

2 naturally derived basis functions

The signal, x, is decomposed into the following

x =
n∑

i=1

ci + r

where ci denotes the i-th IMF, i = 1, · · · , n and r the trend

⇒ No prior assumptions are made about the signal, ideal for
nonlinear and nonstationary analysis
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Intrinsic Mode Functions (IMF)

An IMF a function that satisfies the following two criteria:

1. The upper and lower envelopes are symmetric

2. The number of zero-crossings and the number of extrema are equal or
differ at most by one

IMF Properties

2 Orthogonality

2 Amplitude/Frequency modulated components

2 “Oscillatory modes” that facilitate time-frequency analysis
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Empirical Mode Decomposition: Underlying Idea

• Creates an adaptive decomposition of the signal in hand.

• The basic idea behind EMD is to consider an input signal as fast
oscillations superimposed on slow oscillations.

• The fast oscillations are repeatedly sifted from the input signal until a
monotonic signal (residue) is obtained.
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Sifting Process - IMF Decomposition

1. All the maxima of the signal are connected with a spline denoted by U

2. All the minima of the signal are connected with a spline denoted by L

3. Determine the mean envelope m =
U + L

2
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4. Subtract the mean envelope from the signal to obtain a proto-IMF
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Sifting Process - IMF Decomposition

5. The process is repeated until the sifted signal satisfies the conditions of
an IMF
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Sifting Process - IMF Decomposition

0 100 200 300 400 500 600 700 800 900 1000
−2

0
2

x 10−5

0 100 200 300 400 500 600 700 800 900 1000
−5

0
5

x 10−5

0 100 200 300 400 500 600 700 800 900 1000
−5

0
5

x 10−5

0 100 200 300 400 500 600 700 800 900 1000
−2

0
2

x 10−4

0 100 200 300 400 500 600 700 800 900 1000
−5

0
5

x 10−5

0 100 200 300 400 500 600 700 800 900 1000
−5

0
5

x 10−5

0 100 200 300 400 500 600 700 800 900 1000
−2

0
2

x 10−5

0 100 200 300 400 500 600 700 800 900 1000
−1

0
1

x 10−5

0 100 200 300 400 500 600 700 800 900 1000
−5

0
5

x 10−6

0 100 200 300 400 500 600 700 800 900 1000
−2

0
2

x 10−5

6. After extracting an
IMF, this same IMF is
subtracted from the signal
and the residual is treated
as the new data and fed
to step 1

7. All above steps are
iterated until the final
residual is a monotonic
function. The last residual
is considered as the trend.
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Instantaneous Frequency

The IMFs are narrowband signals ⇒ the Hilbert transform can be
applied to each IMF separately.

IMFs can be represented as a set of analytic signals

ci(t) = ai(t) · e
j·θi(t)

The whole analytic signal thus is

X(t) =

n∑

i=1

ai(t) · e
j·θi(t)

This process can be described as “fission” of a multicomponent
signal
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Instantaneous Frequency

Defining the instantaneous frequency as the derivative of the phase

f(t) =
dθ

dt

The Hilbert Spectrum can be obtained by contouring the instantaneous
amplitude a(t) versus time t and instantaneous frequency f(t)

⇒ We can calculate the instantaneous frequency of each IMF
component at each time instant

,
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Some Examples

0 100 200 300 400 500 600
−2

0

2

O
rig

in
al

0 100 200 300 400 500 600
−2

0

2

C
1

0 100 200 300 400 500 600
−2

0

2

C
2

0 100 200 300 400 500 600
−1

0

1

R
3

Time Index
0 100 200 300 400 500 600

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time Index
Fr

eq
ue

nc
y 

(N
or

m
al

is
ed

)

Frequency of  Sine Wave 1

Frequency of Sine Wave 2

Sum of two sinewaves Time frequency representation

c© DRIVESCO Workshop, May 2009 17



Illustrative Example

Signal Morlet Wavelet EMD

Hilbert–Huang spectrum (right) has better localisation properties that wavelets (middle)

From Huang et al. Empirical Mode Decomposition, Proceedings of the
Royal Society A, 1998.
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Image Enhancement and Fusion Using EMD

2 Image features (object texture or unwanted noise) can be attributed to
local variations in spatial frequencies

2 Therefore, the behaviour of the extracted image modes can reflect these
features

2 Correct fusion of the “relevant” IMFs can be used to highlight (or
remove) specific image attributes

We consider the fusion capabilities of EMD under the following headings:

• Image Denoising

• Image Restoration (Illumination Removal)

• Image Fusion (of Images From Multiple Image Modalities)
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Image Denoising

Noise contamination is a common problem when acquiring real world
images and consequently image denoising is an important element of
image processing. Many existing methods, however, are sub-optimal for
the following reasons:

2 They make unrealistic assumptions about the data (ICA - unrealistic
independence conditions, PCA - noise and original image can be
separated by linear projection)

2 They are not optimised for enhancing higher order (nonlinear) statistics,
that are commonly associated with the perceptual quality of an image,
and do not cater for other real world data characteristics such as
nonstationarity (block based Weiner filtering)

2 They are computationally complex (Bayesian and particle models)
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Image Denoising

Consider an original image corrupted by white Gaussian noise.

Original Contaminated (SR 12.3 dB)
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Image Denoising

Decomposing the contaminated image by EMD, we obtain the following:

Note how each of ‘Image Modes’ represents the frequency scales within the
image. The higher index IMFs contain high frequency detail such as the
image edges while slowly oscillating effects such as illumination are
contained within the low index IMFs.

c© DRIVESCO Workshop, May 2009 22



Roles of IMFs

Original Sum of IMF1-IMF5 Sum of IMF6-IMF19

Clearly, we can operate at different scales
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Automated Data Fusion via Fission (MLEMD)

EMD for Data Fusion via Fission
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Incorporating the scale and temporal information
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Image Denoising (PREMD)

We can deduce that the ‘most’ of the noise energy is contained within the
high frequency modes. One approach, is to empirically select the IMFs
that best represent the original image.

2 The new SNR is 15.2 dB, the
noise energy is clearly reduced

2 The approach is clearly
suboptimal (binary weighting
of the IMFs, not based on any
optimality criterion)
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Image Denoising (OEMD)

Another approach is to determine the best estimate of the original signal
by combining the IMFs in the least mean squares sense.

2 The new SNR is 16.7 dB, an
improvement over PREMD

2 The approach is block based
and static, and can not cater
for dynamic IMF relevance
estimation
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Image Denoising (Machine Learning and EMD)

A more adaptive and robust solution is to combine EMD with machine
learning (adaptive filtering)

2 High quantative performance,
the SNR is 18.7 dB.

2 The approach is dynamic and
facilitates local feature fusion

2 High qualitative performance,
the perceptual qualities of the
original image are retained
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Image Denoising

Noisy image, SNR = 13 dB EMD of the image
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The Method Naturally Deals With Texture

Cracked varnish on wood: Left – original; Midle – cracks; Right – wood pattern

Carpet: Left – original; Midle – texture; Right – carpet pattern
The texture is separated naturally as higher frequency T-F components
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Image Restoration (Illumination Removal)

2 A key problem for a machine vision system is image changes that occur
due to scene illumination

2 Incident light on a surface produces complex artifacts, making it
difficult for the system to separate changes caused by local variations in
illumination intensity and colour

• It can be assumed that shade in images creates low valued regions with
large extrema that change slowly

• It is therefore likely that the effects of the shade will be isolated in the
lower index IMFs and a shade free image can be achieved by combining
the relevant IMFs
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Illumination Removal – Real World Objects

Image with shade Shade only Original image

Shade removal: the shading is now uniform across the image surface
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Image Restoration (Illumination Removal)

Image with shade Shade only Original image

Shade removal: Also works on real–world objects
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Image Fusion (From Multiple Image Modalities)

2 Image fusion is becoming an important area of research, particularly as
different methods of image acquisition become available

2 The fused image retains all “relevant information” from the different
sources while disregarding unwanted artifacts

• Given the unique “fission” properties of EMD, it has a strong potential
for fusion

• We propose the use of complex EMD with the input images as real and
imaginary components respectively

• The instantaneous amplitude of the extracted IMFs indicates, for each
frequency level at each pixel, which of the components contains the
salient information. Fusion can be achieved by combining only IMF
components with the largest instanteous amplitudes.
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Obstacles to Automatic Heterogeneous EMD Fusion

2 However, the fully adaptive and empirical nature of the algorithm, as
well as a sensitivity to parameter selection, compromises the uniqueness
of the decomposition.

2 Therefore signals with similar statistics can often yield different IMFs
(in both number and frequency) making it difficult to compare
decompositions from different sources.

This is illustrated by observing the decompositions of a sinusoid corrupted
by different realisations of AWGN. Note the the difference in the IMFs.
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Obstacles to Automatic Heterogeneous EMD Fusion

Automatic fusion algorithms are necessary for widespread use!

But this is not often possible using standard EMD because

3 Uniqueness of the scales cannot be guaranteed;

3 Comparison of IMFs from different sources is meaningless!

Thus, automatic fusion of heterogeneous sources using EMD is only
possible if their IMFs are

2 equal in number;

2 matched in properties (frequency).

[Mandic et al., Flandrin et al.]
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Complex EMD - Local Mean Estimation
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Heterogeneous EMD Fusion

3 It was proposed [Looney and Mandic] to use the complex extensions of
the algorithm to decompose heterogeneous sources simultaneously.

3 The approach may be used to find “common scales” within different
data sets, thus addressing the problem of uniqueness.

Observe how common frequency scales are found in different signals (U1
and U2) by applying complex extensions of EMD to (U1 + jU2).
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Fusion Results [Looney and Mandic ICDSC’08)

Visual Thermal Pixel Average Fusion

PCA Fusion Wavelet Fusion Complex EMD Fusion
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Out of focus image fusion using complex EMD

A (original) B (original) Out of focus fusion

A (original) B (original) Fusion

Looney and Mandic, IEEE Transactions on Signal Processing, April 2009.
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Complex EMD vs Wavelets

EMD fusion Wavelet fusion

The wavelets produce artifacts - around the text visible as shaded “boxes”
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Other Possibilities – “Enviromental Dimension”

Visual Thermal Image Fusion

From “Image Fusion and Enhancement via Empirical Mode Decomposition”, H. Hariharan

et al., Journal of Pattern Recognition Research, 2006

Here, the fusion was performed manually, without using any machine
learning or extensions of EMD.
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Conclusions - Image Fusion

2 EMD is non-parametric and self adaptive which is advantageous when
decomposing real world images, which display nonstationary and
nonlinear behaviour, into their natural frequency modes

2 It is a powerful tool for the purposes of “image fusion via fission”

2 Automatic algorithms for enhancement, restoration and fusion have
been presented

2 This is all achieved within a unique framework

2 Extensions include direct 2D and 3D realisations, which also facilitates
the processing of color images
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