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Humanoid vision systems 



Humanoids with foveated vision 

•! Humanoid head with special lenses having a 
variable viewing angle (Kuniyoshi et al.) 

•! Babybot with log-polar cameras at the University 
of Genova (Sandini et al.) 

•! Humanoids with two pairs of cameras in each eye 

for foveal and peripheral vision: 

- DB, CB-i at ATR 

- ARMAR (Dillmann and Asfour) 

- Cog and Kismet at MIT (Brooks et al.) 

- Infantoid at CRL (Kozima) 



Foveated vision 



Integration with motor control 

•! Makes sense only on active systems. 

•! Vision should be able to deal with fast robot 

movements and occlusions. 

•! Motor control 

should be able to 

deal with vision 

failures. 



3-D vision on an active head 



Eye coordinate systems 
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Object frame •! Tco
j, j = 0, 1, …, n: 

object positions in 

camera coordinates 

•! Tec: the unknown and 

constant transformation 

between the eye and 

camera coordinate 

systems 

•! Ter
j: the rotated eye 

coordinate frames 



Model identification 

We estimate a number of postures of the fixed 

calibration pattern observed from different eye 

orientations: 



Transformations 

•! The following relation can be derived:: 

•! The following equation system needs to be 

solved on the special Euclidean group of 

rigid body transformations SE(3): 
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Stereo coordinate systems 
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3-D reconstruction 

•! We need to express 3-D coordinates in a common 

coordinate frame (we use left eye camera frame) 

•! This allows us to calculate yl by solving (Al, Ar are 

the internal camera parameters) 

•! The point in body coordinate frame is given by 
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Experiments 



Experimental results 
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Convergent eye movement, 

wide lense, distance about 

0.45 m. The standard 

deviation was (0.010; 0.002; 

0.005) m. 

Divergent eye movement, 

wide lense, distance about 

0.45 m. The standard 

deviation was (0.020; 0.003; 

0.007) m 



Experimental Results 

Convergent eye movement, 

wide lense, distance about 1.1 

meter. The standard 

deviation was (0.066; 0.006; 

0.008) m. 

Divergent eye movement, 

wide lense, distance about 1.1 

meter. The standard 

deviation was (0.102; 0.011; 

0.007) m. 
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Experimental results 

Convergent eye movement, 

narrow lense, distance about 

0.65 m. The standard 

deviation was (0:019; 0:007; 

0:003) m. 

Divergent eye movement, 

narrow lense, distance about 

0.65 m. The standard 

deviation was (0:029; 0:011; 

0:002) m. 
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Depth errors in foveal and 

peripheral views 

•! The expected error in stereo reconstruction 

increases with distance and decreases with focal 

length: 

•! On an active system, the 

disparity error increases 

with the focal length: 
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3-D object tracking: 

A virtual mechanism approach 

•! Angle of view is a function of robot configuration 

 (not very standard description of the task) 

•! We can not use “off the shelf” control algorithms 



Humanoid head object tracking 

A virtual mechanism approach 

•! “Virtual mechanism” 

•! Example: 

 Task: 1 DOF (angle) 

 (depends on obj. and hand position) 

 Modified task using a virtual mechanism: 

 2 DOF (object position) 



Humanoid head object tracking 

A virtual mechanism approach 

•! Two virtual mechanisms – one in each robot eye 

•! Task space (object position): 2 " 3 DOF = 6 DOF 

 Head 7 DOF + 2 DOF = 9 DOF 



Control algorithm 

•! Head kinematics (with virtual mechanism) 

•! standard velocity based controller 

•! branching mechanism 



Tracking accuracy 

•! accuracy??? 

•! 3D object position 

•! the same kinematic model is used twice 

L and R images 
3D position 

kinematic 

model 
kinematic 

model 

head 

configuration 



Results – tracking 

•! Accurate enough even when the kinematic model 

is not precise.  



Grasping Using Active 3-D Vision 



Dynamic Systems for Movement 

Generation 

•! Equations for point-to-point (discrete) 

movements: 

•! Canonical system: 
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Can we avoid using 3-D vision? 

•! Several problems: 

–!Object must be detected in both views 

–!System must be calibrated 



Peripheral and foveal views 
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ŷ
p
=
$
p
r
2
• t # $

p
r
23
Z

r
3
• t # r

33
Z

•! Position in peripheral view that results in central 

position in foveal view 

•! Note: 

–! Transformation between foveal and peripheral camera: 

R = [r1
T, r2

T, r3
T], t 

–! Position of the point in space in foveal camera c. s.: X, Y, Z 

–! Internal camera parameters: !p, "p, #p, !f, "f, #f 



Standard configurations 

Given that the point is in the center of the fovea, where is 

the point in the peripheral image? 

Cameras 

with parallel 

optical axes 

Displacement in the fovea (Dx,Dy) due to the error in the 

periphery (dx,dy) 
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Example (humanoid robot DB) 
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Closed-loop image-based control 

•! Network of PD-controllers to exploit the 

redundancy of our humanoid. 

•! The controller network attempts to: 

–! position the object in the fovea, 

–! introduce cross-coupling between the eyes to 

help the eye movements if the object is lost in 

one view, 

–! assist preceding joints to maintain natural 

posture away from the joint limits 



Example controller 

•! Left eye pan: 

   

Djoint = !joint
*
!!joint( )!Kd

!!joint

Dblob = xblob
*
! xblob( )!Kdv

!xblob

   

!!LEP = Kp KrelaxationDLEP !K target"EPKvCLX blobDLX blob +#
$

        Kcross-target"EPKvCRX blobDRX blob
%
&



Example Controller 

•! Head nod: 

   
Djoint = !joint

*
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Control System Properties 

•! Accurate forward kinematics is not 

needed. 

•! The system can automatically compensate 

for failures in joint movements. 

•! When the target is not visible, the system 

brings the robot back to the preferred 

posture.  



Head motion 



Head motion 



Image-based reaching 



Object recognition and foveation 

•! Experiments with view-based approaches: train 

the system by showing the object from many 

viewpoints. 

•! Preprocess the images to achieve robustness 

against change in position, orientation, scale 

and brightness (Gabor filters). 

•! Classification using support vector machines. 



Training 



Collected images used for training 



Affine warping and Gabor jets 

Gabor jets consists of 

magnitudes of several complex 

values calculated by convolution 

with Gabor kernels at each node. 

Such collections are used to 

represent object views.  

Affine warping (using results of visual tracking) 

makes it possible to compare Gabor jets (Wiskott 

et al., 1997) across views. 



Nonlinear multi-class SVMs 
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•! Scalar products arising in standard linear SVMs 

are replaced by symmetric kernel functions. 

•! The convergence of the optimization algorithm 

can be guaranteed for all kernels that fulfill 

Mercer condition. 



Kernel construction 

A collection of Gabor jets 

calculated on grid of points X in 

images I and J, respectively. 
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Results for multi-class SVMs 
Tr. views 

per object 
SVM NNC 

208 97.6% 95.9% 

104 96.7% 93.7% 

52 95.1% 91.5% 

26 91.9% 86.7% 

Tr. views 

per object 
SVM NNC 

208 94.2% 89.3% 

104 92.4% 87.3% 

52 90.7% 84.4% 

26 86.7% 79.2% 

Tr. views 

per object 
SVM NNC 

208 91.0% 84.7% 

104 87.2% 81.5% 

52 82.4% 77.8% 

26 77.1% 72.1% 

Fovea resolution: 

160x120 

Fovea resolution: 

80x60 

Fovea resolution: 

40x30 

•! 14 objects 

•! At most 2912 views were used for SVM training. 

•! Models invariant against 3-D depth rotations were 
learned. 



Learning object representations: 

Constraining vision by manipulation 

•! By taking control of the object, the robot can focus on 

the relevant part of the image, thus bypassing potential 

pitfalls of pure bottom-up attention and segmentation. 

•! We are looking at the following task: what kind of 

sensorimotor processes are needed to learn a full 3-D 

sensory representation of an object. 



Visuomotor processes 

•! Motor 

–!Grasp the object 

–!Get the object into and away from the fovea 

–!Manipulate the object to collect snapshots from 

various viewpoints 

•! Visual 

–!Segment the object from the background 

–!Build a model suitable for recognition 



Figure-ground segmentation for 

snapshot acquisition 

Bayesian approach (closed-world assumption): 

•! the object, which we model by process #o 

•! the background (#b), 

•! the hand (#h), and 

•! everything we do not know about the environment - 

outliers (#t) 



Estimating object area 

(EM-algorithm) 

•! Closed-world assumption allows us to to express the 

probability that object o is observed in image I 

•! The position and extent of the object can be estimated 

by minimizing the log-likelihood  
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Figure-ground segmentation 

•! The position and extent of the object can be estimated 
by minimizing the log-likelihood (using EM-
algorithm)  



Exploiting the redundancy 

•! Maximize manipulability to increase the 

range of rotations in depth. 



Implementation on humanoid 

robot ARMAR 



Summary 

•! Evaluation of 3-D vision on a humanoid robot 

•! Grasping using active 3-D vision 

•! Head control and foveated vision 

•! Object recognition and foveated vision 

•! Acquiring models of objects without having any 

prior knowledge about them 
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